
1

Louis-Philippe Morency

Multimodal Machine Learning

Lecture 10.2: New Directions



Objectives of today’s class

▪ New research directions in multimodal ML

▪ Alignment 

▪ Representation

▪ Fusion

▪ Translation 

▪ Co-learning
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New Directions:

Alignment



Phrase Grounding by Soft-Label Chain CRF

Two main problems:

(1) Dependencies between entities (2) Multiple region proposals

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Phrase Grounding by Soft-Label Chain CRF

Two main problems:

(1) Dependencies between entities (2) Multiple region proposals

Solution: Formulate the phrase grounding as a sequence labeling task

❑ Treat the candidate regions as potential labels

❑ Propose the Soft-Label Chain CRFs to model dependencies among regions

❑ Address the multiplicity of gold labels



Phrase Grounding by Soft-Label Chain CRF

Standard CRF

▪ Cross-entropy Loss:

Soft-Label CRF:

▪ KL-divergence between the model and target distribution:

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019

- Input sequence: 𝒙 = 𝑥1:𝑇

- Label sequence: 𝒚 = 𝑦1:𝑇

- Score function: 𝑠(𝒙, 𝒚)

- Sequence of target distribution: 𝒒 = 𝑞1:𝑇

- Label distribution over all K possible

labels for input 𝑥𝑡: 𝑞𝑡 ∈ ℝ𝐾

➢ Each input 𝑥𝑖 is associated to only one label 𝑦𝑖

➢ Each input 𝑥𝑖 is associated to a distribution of labels 𝑦𝑖



Phrase Grounding by Soft-Label Chain CRF

For efficiency: Reduce the model to a first-order linear chain CRF, 

whose scoring function factorizes as:

where are the pairwise potentials between labels at 𝑡 − 1 and 𝑡

are the unary potentials between label and input at 𝑡

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019



Phrase Grounding by Soft-Label Chain CRF

▪ Training Objective:

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019

Pairwise potentials

Unary potentials

MLP

MLP

MLP
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Phrase Grounding by Soft-Label Chain CRF

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Self-supervised approach to learn an embedding space 

where two similar video sequences can be aligned temporally

Temporal Cycle-Consistency Learning
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Representation Learning by enforcing Cycle consistency

Temporal Cycle-Consistency Learning
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Compute “soft” / “weighted” nearest neighbour:

Temporal Cycle-Consistency Learning

distances: Soft nearest neighbor:

Find the nearest neighbor the other way and then penalize the distance:

penalty!
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Nearest Neighbour Retrieval

Temporal Cycle-Consistency Learning
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Anomaly Detection 

Temporal Cycle-Consistency Learning



ViLBERT: Pretraining Task-Agnostic Visiolinguistic

Representations for Vision-and-Language Tasks

Lu J, Batra D, Parikh D, et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language 

tasks.” NeurIPS 2019

▪ ViLBERT: Extending BERT to jointly represent images and text

▪ Two parallel BERT-style streams operating over image regions 

and text segments.

▪ Each stream is a series of transformer blocks (TRM) and novel 

co-attentional transformer layers (Co-TRM).



ViLBERT: Pretraining Task-Agnostic Visiolinguistic

Representations for Vision-and-Language Tasks

▪ Co-attentional transformer layers

▪ Enable information exchange between modalities.

▪ Provide interaction between modalities at varying representation depths.

Lu J, Batra D, Parikh D, et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language 

tasks.” NeurIPS 2019



ViLBERT: Pretraining Task-Agnostic Visiolinguistic

Representations for Vision-and-Language Tasks

Two pretraining tasks

1. masked multi-modal modelling

▪ the model must reconstruct image region categories or words for 

masked inputs given the observed inputs

2. multi-modal alignment prediction

▪ the model must predict whether or not the caption describes the image 

content.

Lu J, Batra D, Parikh D, et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language 

tasks.” NeurIPS 2019



Multi-Head Attention with Diversity for Learning 

Grounded Multilingual Multimodal Representations

▪ Introduce a new multi-head attention diversity loss to 

encourage diversity among attention heads.

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal 

Representations.” EMNLP 2019

Synchronizes 

the multi-head 

attentions 

between the 

transformers



Multi-Head Attention with Diversity for Learning 

Grounded Multilingual Multimodal Representations

Multi-head attention diversity loss

▪ Taking Image-English instances {V, E} as an example

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal 

Representations.” EMNLP 2019

- 𝛼𝐷: diversity margin

- : cosine similarity

- 𝑒𝑝
𝑘: the k-th attention head fo English sentence representation

- : the hinge function

If they are from the same 

𝑘𝑡ℎ head, then they should 

be close to each other…

… within a certain margin



Multi-Head Attention with Diversity for Learning 

Grounded Multilingual Multimodal Representations

Multi-head attention diversity loss

▪ Taking Image-English instances {V, E} as an example

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal 

Representations.” EMNLP 2019

▪ Diversity within-modalities and across-modalities:



Multi-Head Attention with Diversity for Learning 

Grounded Multilingual Multimodal Representations

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal 

Representations.” EMNLP 2019

Learned multilingual multimodal embeddings:
(note the sentences are without translation pairs)
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New Directions:

Representation



24

Learn vector representations for 

text using visual co-occurrences

Four types of co-occurrences:

(a) Object - Attribute

(b) Attribute - Attribute

(c) Context 

(d) Object-Hypernym

ViCo: Word Embeddings from Visual Co-occurrences
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Relatedness through Co-occurrences

Since ViCo is learned from multiple types of co-occurrences, it is 

hypothesized to provide a richer sense of relatedness

ViCo: Word Embeddings from Visual Co-occurrences

➢ Learned using a multi-task Log-Bilinear Model
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ViCO leads to more homogenous clusters compared to GloVe

ViCo: Word Embeddings from Visual Co-occurrences
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Neural-symbolic VQA

1) Image de-rendering

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Previously trained in a supervised way
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Neural-symbolic VQA

2) Parsing questions into programs

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Similar to neural 

module networsk
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Neural-symbolic VQA

3) Program execution

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Execution of the program is somewhat 

easier given the “symbolic” 

representation of the image
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Neural-symbolic VQA

3) Program execution

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Execution of the program is somewhat 

easier given the “symbolic” 

representation of the image
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Neural-symbolic VQA

3) Program execution

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Execution of the program is somewhat 

easier given the “symbolic” 

representation of the image
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Neural-symbolic VQA

Neural-symbolic 

programs give 

more accurate 

answers 

(shown in blue)

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018
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Learns visual concepts, words, and semantic parsing of sentences without 

explicit supervision on any of them, but just by looking at images and reading 

paired questions and answers

The Neuro-symbolic Concept Learner

Jiayuan Mao , et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural 

Supervision.” ICLR 2019

Extension from Neural-symbolic VQA:
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The Neuro-symbolic Concept Learner

Jiayuan Mao , et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural 

Supervision.” ICLR 2019

Learns visual concepts, words, and semantic parsing of sentences without 

explicit supervision on any of them, but just by looking at images and reading 

paired questions and answers

Extension from Neural-symbolic VQA:
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The Neuro-symbolic Concept Learner

Jiayuan Mao , et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural 

Supervision.” ICLR 2019
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Time-Contrastive Networks: 

Self-Supervised Learning from (Multi-View) Video

anchor

positive negative

Main idea: 

Embeddings should 

be close if from 

synchronized frames
M

u
lt
i-
v
ie

w
 v

id
e
o
s

Goal: We want to observe and 

disentangle the world from 

many videos.
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Time-Contrastive Networks: 

Self-Supervised Learning from (Multi-View) Video

Set of all triplets in 

the training set

Margin enforced between 

positive/negative pairs:
anchor positive negative

anchor

positive negative
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d = 32

Let’s learn an embedding function f for an sequence x
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Time-Contrastive Networks: 

Self-Supervised Learning from (Multi-View) Video

anchor

positive negative
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Time-Contrastive Networks: 

Self-Supervised Learning from Video

Learn RL policies 

from only one video 
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Time-Contrastive Networks: 

Self-Supervised Learning from Video

Demo: Pouring
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Time-Contrastive Networks: 

Self-Supervised Learning from Video

Demo: Pose Imitation



42

New Directions:

Fusion



43

Pose multimodal fusion as an architectural 

search problem

Each fusion layer combines three inputs:

(a) Output from previous fusion layer

(b) Output from modality A

(c) Output from modality B

MFAS: Multimodal Fusion Architecture Search
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Realization 01 Realization 02

Enables the space to contain a large number of possible fusion architectures.

Space is naturally divided by complexity levels that can be interpreted as 

progression steps

Exploration performed by Sequential model-based optimization 

MFAS: Multimodal Fusion Architecture Search



Video Action Transformer Network

Recognizing and localizing human actions in video clips

Rohit Girdhar, et al. “Video Action Transformer Network.” CVPR 2019

by attending person of interest and their context (other people, objects)



Video Action Transformer Network

▪ Trunk: generate features and region proposals (RP) for the 

people present (using I3D)

▪ Action Transformer Head: use the person box from the RPN 

as a ‘query’ to locate regions to attend to, and aggregates the 

information over the clip to classify their actions

Rohit Girdhar, et al. “Video Action Transformer Network.” CVPR 2019

Initial actor representations



Video Action Transformer Network

▪ Visualizing the key embeddings using color-coded 3D 

PCA projection

▪ Different heads learn to track people at different levels.

▪ Attends to face, hands of person, and other people/objects

in scene

Rohit Girdhar, et al. “Video Action Transformer Network.” CVPR 2019
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New Directions:

Translation
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Speech2face
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Speech2face

Voice encoder + face encoder + face decoder
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Speech2face

Examples of reconstructed faces
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- Introduce task of reconstructing face from voice

- Two adversaries: 

(a) Discriminator to verify the generated image is a face

(b) Classifier to assign a face image to the identity

Reconstructing faces from voices
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The generated face images have identity associations with the true speaker. 

The produced faces have features(for ex. hair) that are presumably not predicted 

by voice, but simply obtained from their co-occurrence with other features

Reconstructing faces from voices
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High-Resolution Image Synthesis and Semantic 

Manipulation with CGANs



55

High-Resolution Image Synthesis and Semantic 

Manipulation with CGANs
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High-Resolution Image Synthesis and Semantic 

Manipulation with CGANs
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High-Resolution Image Synthesis and Semantic 

Manipulation with CGANs



58

Self-Monitoring Navigation Agent via Auxiliary Progress Estimation
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Model: Co-grounded Attention Streams

Self-Monitoring Navigation Agent via Auxiliary Progress Estimation
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Results: Progress Monitoring

Self-Monitoring Navigation Agent via Auxiliary Progress Estimation
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New Directions:

Co-Learning



Regularizing with Skeleton Seqs

▪ Better unimodal representation by regularizing using 

a different modality

[B. Mahasseni and S. Todorovic, “Regularizing Long Short Term Memory with 3D Human-

Skeleton Sequences for Action Recognition,” in CVPR, 2016]

Non parallel data!



Cyclic

Loss

Decoder

Multimodal Cyclic Translation

Verbal modality
Visual modality

“Today was a great day!”

(Spoken language) Co-learning

Representation

Sentiment

Encoder

Paul Pu Liang*, Hai Pham*, et al., “Found in Translation: Learning Robust Joint Representations by 

Cyclic Translations Between Modalities”, AAAI 2019



Taskonomy

Zamir, Amir R., et al. "Taskonomy: Disentangling Task Transfer Learning." Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition. 2018.



Associative Multichannel Autoencoder 

▪ Learning representation through fusion and translation

▪ Use associated word prediction to address data sparsity

[Wang et al. Associative Multichannel Autoencoder for Multimodal Word 

Representation, 2018]



Grounding Semantics in Olfactory Perception

▪ Grounding language in vision, sound, and smell

[Kiela et al., Grounding Semantics in Olfactory Perception, ACL-IJCNLP, 

2015] 


