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Objectives of today’s class
= New research directions in multimodal ML
= Alignment
= Representation
= [Fusion
= Translation
= Co-learning
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New Directions:
Alignment
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Phrase Grounding by Soft-Label Chain CRF

Two main problems:

(1) Dependencies between entities (2) Multiple region proposals

at a sporting event toss a

il High into the ai Old man sits on rocks while working
girl high up into the air .

with his hands .

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Phrase Grounding by Soft-Label Chain CRF

Two main problems:

(1) Dependencies between entities (2) Multiple region proposals

at a sporting event toss a

il High into the ai Old man sits on rocks while working
girl high up into the air .

with his hands .

Solution: Formulate the phrase grounding as a sequence labeling task
O Treat the candidate regions as potential labels

U Propose the Soft-Label Chain CRFs to model dependencies among regions
O Address the multiplicity of gold labels
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Phrase Grounding by Soft-Label Chain CRF

- Input sequence: x = x7
exp 5(y, ©)

>y exps(y’, @)

p(y|x) = - Label sequence; y = y1T

- Score function: s(x,y)
Standard CRF
= Cross-entropy Loss: L = —logp(y|z) = —s(y, z) + log Z(x)

> Each input x! is associated to only one label y*
Soft-Label CRF:

= KL-divergence between the model and target distribution:

Sequence of target distribution: q = g*'T

q(y|z)
L= Z { (y|z) log p(y|:n)} - Label distribution over all K possible

labels for input xt: gt € RX
» Each input x' is associated to a distribution of labels y*

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Phrase Grounding by Soft-Label Chain CRF

For efficiency: Reduce the model to a first-order linear chain CRF,
whose scoring function factorizes as:

S(y7 m) — Z S(ytﬂ yt_17 m)
=Y {r' ) e ) )

where 7(-,-, ) are the pairwise potentials between labels at t — 1 and t
(-, ) are the unary potentials between label and input at ¢

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Phrase Grounding by Soft-Label Chain CRF

Region Proposals

Vision

Backbone

—— P Visual Spatia
\
N /

Region Feats

Caption Text Feats
The dog reaches .,
out for a ball . Embedding
+LSTM

= Training Objective: L = Liabel + YLreg

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Phrase Grounding by Soft-Label Chain CRF

MLP

Vision
Backbone
—— ) Visual Spatial

\
S—7

: (.’ )

i = = e A ’ :: 6
e Region Feats LRBP MLP
Fusion
I: >
Caption Text Feats / /
II M LP

The dog reaches ) [ Reir::mn J
out for a ball . Embedding how .
+ LSTM 0X REGression

= Training Objective: L = Liabel + YLreg

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Phrase Grounding by Soft-Label Chain CRF

A man in Young man in A woman in A child is holding
reclines in a lounge chair in with other young people in and skirt enjoys dancing in front of an oven .
a living room of a house . background . with a male friend .

Soft-Label

Soft-Label

Chain CRF

Liu J, Hockenmaier J. “Phrase Grounding by Soft-Label Chain Conditional Random Field” EMNLP 2019
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Temporal Cycle-Consistency Learning

Video1 B8

Temporal
Alignment

embedding space

Self-supervised approach to learn an embedding space
where two similar video sequences can be aligned temporally
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Temporal Cycle-Consistency Learning

Representation Learning by enforcing Cycle consistency

A
~ nre::-u'est
e - neighbors
" — “
; ][ —.
() . Video 2
. . =
r 1 T
cycle Cy cle consistency not cycle
consistent error consistent
o
embedding space
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Temporal Cycle-Consistency Learning

video embedding . soft nearest neighbor . cycling back

Compute “soft” / “weighted” nearest neighbour:

e—lui—v;|?

= M s —v. ]2
SM o fus—vrl

&

M
v = E U5,
J

Find the nearest neighbor the other way and then penalize the distance:
e [T—ukl|?

Zé‘f e—|10—u;|?

i —pf?
chr - o2 + /\log(a)

Br =
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Temporal Cycle-Consistency Learning

Nearest Neighbour Retrieval

Query Retrieved Nearest Neighbors

S

Glass half Full

Leg fully u after throwing
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Temporal Cycle-Consistency Learning

Anomaly Detection
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Distance to Nearest Frame in Typical Videos

0 5 10 15 20 25 30 35 40 45
Frame Index Anomalous ACtl\«'lty
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VILBERT: Pretraining Task-Agnostic Visiolinguistic
Representations for Vision-and-Language Tasks

= VILBERT: Extending BERT to jointly represent images and text

= Two parallel BERT-style streams operating over image regions
and text segments.

= Each stream is a series of transformer blocks (TRM) and novel
co-attentional transformer layers (Co-TRM).

o Vi V2 V3 VU ] e e e e e ——————
[h’UO: hvlv Y thJ
<IMG>
.
o ; : o e
<CLS> Man shopping for fruit _ , <SEP> "
\ WO W]_ WZ W3 W4 WT } Embed I_:.:[ _Tfl\f L . ! hWO'hW1’ 'hWTJ
L-k x K x

Lu J, Batra D, Parikh D, et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language
tasks.” NeurlPS 2019
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VILBERT: Pretraining Task-Agnostic Visiolinguistic
Representations for Vision-and-Language Tasks

= Co-attentional transformer layers
= Enable information exchange between modalities.
= Provide interaction between modalities at varying representation depths.

H(f:’l) H‘SH'J‘)“ an-I'l)
s \ s N ) (- ~ )
Add & Norm Add & Norm Add & Norm

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Multi-Head
Attention

V §K }Q [V" Ky
o / . J
e J \Visual J L Linguisticj
HO HO I etetenterbnfentenintenten et HO
(a) Standard encoder transformer block (b) Our co-attention transformer layer

Lu J, Batra D, Parikh D, et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language
tasks.” NeurlPS 2019
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VILBERT: Pretraining Task-Agnostic Visiolinguistic
Representations for Vision-and-Language Tasks

Two pretraining tasks

1. masked multi-modal modelling

= the model must reconstruct image region categories or words for
masked inputs given the observed inputs

2. multi-modal alignment prediction

= the model must predict whether or not the caption describes the image
content.

. Man shopping :/g_\)—bﬂ-bAIigneleotAligned
"’ N ™ s ™ /_h_\

1 th th e hWT

Language BERT Vnsnon | Language BERT
> | |<CLS> :msw ‘ <MASIC> for | === |<SEP> ' o """ <CLS> @ shopping @ ki”/
(a) Masked multi-modal learning (b) Multi-modal alignment prediction

Lu J, Batra D, Parikh D, et al. “Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language
tasks.” NeurlPS 2019
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Multi-Head Attention with Diversity for Learning
Grounded Multilingual Multimodal Representations

= Introduce a new multi-head attention diversity loss to
encourage diversity among attention heads.

.. Synchronizes
% the multi-head
i attentions
/ between the
" transformers

~— m [r Attention ]-]

* Zwei Hunde rennen.. ein Feld ..black dog chases a brown

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal
Representations.” EMNLP 2019
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Multi-Head Attention with Diversity for Learning
Grounded Multilingual Multimodal Representations

Multi-head attention diversity loss
= Taking Image-English instances {V, E} as an example

suEy
* ..

I2(V,E) > > > aD—S ’Up,ek%(r)]_F

If they are from the same

- ayp: diversity margin k* head, then they should
Ty be close to each other...
- s(a,b) = TalTeT : Cosine similarity ... within a certain margin

ez’,‘: the k-th attention head fo English sentence representation

.]+ = max(0,.) : the hinge function

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal
Representations.” EMNLP 2019
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Multi-Head Attention with Diversity for Learning
Grounded Multilingual Multimodal Representations

Multi-head attention diversity loss
= Taking Image-English instances {V, E} as an example

suEy
* ..

I (V,E) > > ) —S vp,e;’.f#)h

= Diversity within-modalities and across-modalities:

i (V,E,G)=17(V,V)+17(G,G) + 17 (E,E)
+1P(V,E)+ 15 (V,G) + 12 (G, E),

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal
Representations.” EMNLP 2019
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Multi-Head Attention with Diversity for Learning
Grounded Multilingual Multimodal Representations

Learned multilingual multimodal embeddings:
(note the sentences are without translation pairs)

and
.Wl arin pi * =
an.w % O.Qég?éj orange
® e
o
-’

- o
= =W glasses
S B

The man with pierced ears is wearing
glasses and an orange hat °

Huang, Po-Yao, et al. “Multi-Head Attention with Diversity for Learning Grounded Multilingual Multimodal
Representations.” EMNLP 2019
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New Directions:
Representation
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ViCo: Word Embeddings from Visual Co-occurrences

Learn vector representations for
text using visual co-occurrences

Four types of co-occurrences:

(a) Object - Attribute
(b) Attribute - Attribute
(c) Context

(d) Object-Hypernym

Language Technologies Institute

Object Words

man, person, adult, mammal
woman, person, adult, mammal
table, tablecloth, furniture
rice, carbohydrates, food
salad, roughage, food
glass, glassware, utensil
plate, crockery, utensil
fork, cutlery, utensil
spoon, cutlery, utensil

Attribute Words

muscular, smiling
lean, smiling
striped, oval
white, grainy, cooked
leafy, chopped, healthy, red, green
clear, transparent, reflective, tall
ceramic, white, round, circular
metallic, shiny, reflective

serving, metallic, shiny, reflective




ViCo: Word Embeddings from Visual Co-occurrences

Relatedness through Co-occurrences

Word Pair  ViCo Obj-Attr  Attr-Attr Obj-Hyp Context GloVe
crouch /squat.  0.61 0.18 0.25 0.05
sweet [ dessert.  0.66 0.56 0.43
man / male 0.38 - 0.34
purple / violet L 0.03 0.52

hosiery / sock

0.07 0.23

aeroplane / aurcraft_ 0.43
bench / pew| 0.63 0.67 0.09 0.1
keyboard / mouse 0.19 0.63 0.19 0.52
laptop / desk 0.39 0.23 0.24 0.28
window / door.  0.58 0.46 0.35 0.67
hair / blonde 0.16 0.56 0.32 -0.15 0.17 0.51

thigh / ankle 0.09 0.19 0.03 0.01

garlic / onion 0.36 -0.03 0.3 0.37

driver / car 0.27 0.16 0.26 0.12

girl / boy 0.41 0.38 0.22 0.44

Since ViCo is learned from multiple types of co-occurrences, it is
hypothesized to provide a richer sense of relatedness

» Learned using a multi-task Log-Bilinear Model
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ViCo: Word Embeddings from Visual Co-occurrences

VICO leads to more homogenous clusters compared to GloVe

t-SNE Plots

§ transport
food
O buildings
D animals
appliances
% actions
clothes
D utensils
M bodyparts
* colors
\/ electronics
. numbers

X humans

(a) GloVe+ViCo(linear) (b) GloVe
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Neural-symbolic VQA

1) Image de-rendering

Previously trained in a supervised way

(b) Object Segments (c) Structural Scene Representation

(a) Input Image

ID  Size Shape  Material Color b y z
1 Small Cube  Metal  Pumple 045 -110 035
= ;ASNSI‘N - 2 Large  Cube Metal Green  3.83  -0.04 0.70
LN 3  Large Cube Metal Green  -320 0.63  0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
> 5 Large Cube Metal Green 158  -1.60 0.70

I. Scene Parsing (de-rendering)

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018
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Neural-symbolic VQA

Similar to neural

2) Parsing questions into programs .10 convorek

(a) Input Image (b) Object Segments (c) Structural Scene Representation

» ID  Size Shape  Material Color b y z
1 Small Cube Metal Purple -0.45 -1.10 035
= #é;kN =¥ 2 Large  Cube Metal Green  3.83  -0.04 0.70
Gl 3  Large Cube Metal Green -3.20 0.63 0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
> 5 Large Cube Metal Green 1.58 -1.60 0.70

I. Scene Parsing (de-rendering)

II. Question Parsing
(Program Generation)

(d) Question

(e) Program
| LSTM |—)1. filter_shape(scene, cylinder)

How many cubes that T STM =PiZ» [PEIERE(HET)
are behind the cylinder = [LsTM |=> 3. filter_shape(scene, cube)

Encoder

(’
Sl LSTM |=> 4. filter_size(scene, large)
| LSTM |—)S. count(scene)

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018
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Neural-symbolic VQA

Execution of the program is somewhat

3) Program execution easier given the “symbolic”
representation of the image

(a) Input Image (b) Object Segments (c) Structural Scene Representation
ID  Size Shape  Material Color b y z
1 Small Cube Metal Purple -0.45 -1.10 035
Mask
=2 ronN ™ =— s 2 Large  Cube Metal Green 383  -0.04 0.70
2l 3 Large  Cube Metal Green -320 063  0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
> 5  Large Cube Metal Green 1.58 -1.60 0.70
I. Scene Parsing (de-rendering) l
1L Queation Parsm.g III. Program Execution
(d) Question (Program Generation) (¢) Program
g 1. filter_shape
LSTM |=—» 1. filter_shape(scene, cylinder) 2. relate
How many cubes that Lo —> 2. relate(behind) ID Smlz:u Shape
are :)ehin;i the cylinder —>| g.o 1o —> 3. filter_shape(scene, cube) —> ; imge g‘::
are large? . :
LSTM |=> 4. filter_size(scene, large) 3 Tatse Cube
| LSTM | => 5. count(scene) 5 Large Cube

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018
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Neural-symbolic VQA

Execution of the program is somewhat

3) Program execution easier given the “symbolic”
representation of the image

(a) Input Image (b) Object Segments (c) Structural Scene Representation
ID  Size Shape  Material Color b y z
1 Small Cube Metal Purple -0.45 -1.10 035
Mask
=2 ronN ™ =— s 2 Large  Cube Metal Green 383  -0.04 0.70
2l 3 Large  Cube Metal Green -320 063 0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
> 5  Large Cube Metal Green 1.58 -1.60 0.70
I. Scene Parsing (de-rendering) l
1L Queation Parsm.g III. Program Execution
(d) Question (Program Generation) (¢) Program
&r 1. filter_shape 3. filter_shape
LSTM |—» 1. filter_shape(scene, cylinder) 2. relate 4. filter_size
How many cubes that Lo —> 2. relate(behind) ID Smlz:u Shape ... l;) Size
are :)ehin;i the cylinder —>| g-° @ —> 3. filter_shape(scene, cube) —> ; imge 23: : le::
are large? . .
LSTM |=> 4. filter_size(scene, large) 3 Tatse Cube 5 e
| LSTM | => 5. count(scene) 5 Large Cube

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018

Language Technologies Institute




Neural-symbolic VQA

Execution of the program is somewhat

3) Program execution easier given the “symbolic”
representation of the image

(a) Input Image (b) Object Segments (c) Structural Scene Representation
ID  Size Shape  Material Color b y z
1 Small Cube Metal Purple -0.45 -1.10 035
Mask
=2 ronN ™ =— s 2 Large  Cube Metal Green 383  -0.04 0.70
2l 3 Large  Cube Metal Green -320 063 0.70
4  Small Cylinder Rubber Purple 0.75 1.31 0.35
> 5  Large Cube Metal Green 1.58 -1.60 0.70
I. Scene Parsing (de-rendering) l
1L Queation Parsm.g III. Program Execution
(d) Question (Program Generation) (¢) Program
&r 1. filter_shape 3. filter_shape
LSTM |[=—> 1. filter_shape(scene, cylinder) 2. relate 4. filter_size 5. count
How many cubes that Lo —> 2. relate(behind) ID Smlz:u Shape ... l;) Size . e
are :)ehin;i the cylinder —>| g.o 1o — 3. filter_shape(scene, cube) —> ; imge gl:: 2 LIz:: Answer:
are large? . .
LSTM |=> 4. filter_size(scene, large) 3 Tatse Cube 5 e
| LSTM | => 5. count(scene) 5 Large Cube

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018
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Neural-symbolic VQA

(b) 1K Programs

Neural-symbolic
programs give
Q: What number of cylinders are gray =~ Q: Are there more yellow matte m 0 re a‘CC u rate

objects or tiny brown matte objects? things that are right of the gray ball
than cyan metallic objects? a n Swe rS

Ours IEP Ours IEP .
filter_small scene filter_small (Shown |n blue)

scene
filter_ small filter_brown filter_cyan filter_ cyan
filter_brown filter_ large filter metal union
filter_ rubber filter_cyan Count filter_brown
scene ... (25 modules) ... (4 modules) ... (25 modules)
filter_gray filter metal scene filter_small
union union filter_yellow filter_yellow
filter cylinder filter_cylinder filter_ rubber filter rubber
count count count count
greater_than greater_than
A:1l A:2 A: no A:no

Kexin Yi, et al. “Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding.” Neurips 2018
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The Neuro-symbolic Concept Learner

Extension from Neural-symbolic VQA:

Learns visual concepts, words, and semantic parsing of sentences without
explicit supervision on any of them, but just by looking at images and reading
paired questions and answers

I. Learning basic, object-based concepts.  II. Learning relational concepts based on referential expressions.

Q: Wh he color of the obiect? Q: How many objects are right of the red object?

: What’s the color of the object? A: 2

g: }{ei‘ be? Q: How many objects have the same material as the cube?
: Is there any cube? A2

A: Yes.

Q: What’s the color of the object?

A: Green.

Q: Is there any cube?
A: Yes.

I11. Interpret complex questions from visual cues.

Q: How many objects are both right of the green cylinder
and have the same material as the small blue ball?
A:3

Jiayuan Mao , et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural
Supervision.” ICLR 2019
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The Neuro-symbolic Concept Learner

Extension from Neural-symbolic VQA:

Learns visual concepts, words, and semantic parsing of sentences without
explicit supervision on any of them, but just by looking at images and reading
paired questions and answers

'Visual Representation | Concept Embeddings | 2aekpropagalion

Gv L Obj 1

: Obj 2 Symbolic Reasoning
Answer: Cylinder
Groundtruth: Box

| Semantic Parsing (Candidate Interpretations)
+ v Query(Shape, Filter(Red, Relate(Left, Filter(Sphere))))
— X Query(Shape, Filter(Sphere, Relate(Left, Filter(Red)))) | —

Q: What 1s the shape of

the red object left of the x Exist(AERelate(Shape, Filter(Red, Relate(Left, Fllter(Sphere))))) REINFORCE
sphere?

Jiayuan Mao , et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural
Supervision.” ICLR 2019
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The Neuro-symbolic Concept Learner
Q: Does the red object left of the green -
cube have the same shape as the
purple matte thing?

Step1: Visual Parsing

Oby 1 =
Obj 2

Obj 3

Obj 4

Step2, 3: Semantic Parsing and Program Execution

Q Program Representations Concepts  Qutputs
1

w Green Cube *_.*_

R s, LN
1

PEEE . B
1

w Purple Matte .

AEQuery | Obiect] Obicct3  ghape No (0.98)

Jiayuan Mao , et al. “The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural
Supervision.” ICLR 2019
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Time-Contrastive Networks:
Self-Supervised Learning from (Multi-View) Video

Goal: We want to observe and

disentangle the world from
many videos. Views

(and modalitie

Multi-view videos

anchor

It I hegative
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Time-Contrastive Networks:
Self-Supervised Learning from (Multi-View) Video

Set of all triplets in

Let’s learn an embedding function f for an sequence x the training set
- \
Margin enforced between V(f(z2), (), f(z?) e T
S 77

positive/negative pairs:

\
1f(2f) = f@)IZ 4+ a <|If(F) = f@)]]3,

anchor positive negative

metric loss
repulsion
B e

Q
el =
\ ol ;
Q <
S
O =
of o 2
(a) Triplet: before. (b) Triplet: after. g
anchor
It T negative hrime
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Time-Contrastive Networks:
Self-Supervised Learning from (Multi-View) Video

metric loss
attraction

repulsion
- . |

________
anchor | positive negative? P e
¢ self-supervised imitation %
| TCN embedding e ——— -
Views I I I S mamas® |

deep network

View
2 =

anchor

I'hegative

It
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Time-Contrastive Networks:
Self-Supervised Learning from Video

metric loss
attraction

repulsion
-

-

anchor negative*

_ | TCN embedding |
Views | |

|
(and modalities) / deep network \
A
- “\\
view =
o8 E
I I I I T I I >
anchor positive negative Time
negative rangef positive range negative range

margin range = m x positive range
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Time-Contrastive Networks:
Self-Supervised Learning from Video

Demo: Pouring

Step 1: Learn representations Step 2: Learn policies

Reinforcement
Learning

[ embedding ]

1st-person observation 3rd-person observation 3rd-person observation
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Time-Contrastive Networks:
Self-Supervised Learning from Video

Demo: Pose Imitation

Learning to imitate, from video, without supervision

Self-regression
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New Directions:
Fusion
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MFAS: Multimodal Fusion Architecture Search

Pose multimodal fusion as an architectural

search problem v % w .
f1(x) f2(x1) f3(x2) far() o 12x
fx) vVov oy
Each fusion layer combines three inputs: e +Lx,y
gly) - A4
(a) Output from previous fusion layer oo %, zzgl
(b) Output from modality A gi(y) g20y1) galys) gn() lzy

(c) Output from modality B

X%m
h[ =g ,Yip Wl y’y?
h,g,1
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MFAS: Multimodal Fusion Architecture Search

L/’ kﬂ -,

| ReLU | sigm

ix,y Sigm

Realization 01 Realization 02

Enables the space to contain a large number of possible fusion architectures.

Space is naturally divided by complexity levels that can be interpreted as
progression steps

Exploration performed by Sequential model-based optimization
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Video Action Transformer Network

Recognizing and localizing human actions in video clips
by attending person of interest and their context (other people, objects)

Input Video Clip Context Embeddings  Person-specific self-attention

SSB[O uonoe

t=—T/2 t=0 t=T/2

Rohit Girdhar, et al. “Video Action Transformer Network.” CVPR 2019
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Video Action Transformer Network

* Trunk: generate features and region proposals (RP) for the
people present (using I3D)

= Action Transformer Head: use the person box from the RPN
as a ‘query’ to locate regions to attend to, and aggregates the
iInformation over the clip to classify their actions

Initial actor representations

Input clip I3D base

Multi-head, multi-layer Tx Head

RPN over center (o] eT] O{@D{Iﬁ\@

frame features g /
- + Layer Laver
Norm Norm

Location
embedding

RDIPonI

R P R —
g attention | T N+1 way
classification
Convolutional feature e <] ® ® Bounding box
Trunk map from 13D " Weighted Sum  Dropout Dropout Tx Unit regression

Rohit Girdhar, et al. “Video Action Transformer Network.” CVPR 2019
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Video Action Transformer Network

= Visualizing the key embeddings using color-coded 3D
PCA projection
= Different heads learn to track people at different levels.

= Attends to face, hands of person, and other people/objects
In scene

Frame Tx-A - - - Attention

Rohit Girdhar, et al. “Video Action Transformer Network.” CVPR 2019
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New Directions:
Translation
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Speech2face

ll ' "l'l " l' Speech2face .

True face Face reconstructed True face Face reconstructed
{for reference) from speech (for reference) from speech

.

’. -

f 20
2 o
2 3A
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Speech2face

Voice encoder + face encoder + face decoder

Millions of s S Face Recognition 4096-D Face Feature
'_' =2 : lF.' RS y
nteria Videcs N B ': Pre-trained & fixed
I e ] Lone|
- m 4 E % L : Trainable
ORGESST c s 0909090909090 9w e :
.8 A
“ ﬂ @ '5 Voice Encoder . Face Decoder Recon. Face
i * 8 Waveform
o, ST n
. iz

=il &
£ Wl ay ;

ram E :
H
)M

Speech2Face Mod
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Speech2face

Examples of reconstructed faces

(ref. frame)
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Reconstructing faces from voices

MI oy — —|—

Voice Recording Vioice Embedding Network; Voice Embedding ; Generator

Introduce task of reconstructing face from voice
Two adversaries:
(a) Discriminator to verify the generated image is a face

(b) Classifier to assign a face image to the identity
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Reconstructing faces from voices

The generated face images have identity associations with the true speaker.

The produced faces have features(for ex. hair) that are presumably not predicted
by voice, but simply obtained from their co-occurrence with other features
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High-Resolution Image Synthesis and Semantic

Manipulation.with. CGANs
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High-Resolution Image Synthesis and Semantic
Manipulation with CGANS

(b) Application: Change label types (c) Application: Edit object appearance
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High-Resolution Image Synthesis and Semantic
Manipulation with CGANS

(a) Original image (b) Our result
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High-Resolution Image Synthesis and Semantic
Manipulation with CGANS
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Self-Monitoring Navigation Agent via Auxiliary Progress Estimation

Exit the bedroom and go tow e table. Go to the

stairs on the left of the couch. Wait on_ the third step.

Which words are completed?
Which words are for next action?
Which direction matches words?

Action: Go to the stairs

Language Technologies Institute




Self-Monitoring Navigation Agent via Auxiliary Progress Estimation

Model: Co-grounded Attention Streams

/¢ Textual grounding

Exit the bedroom and go towards the
table. Go to the stairs on the left of the
couch. Wait on the third step.
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Self-Monitoring Navigation Agent via Auxiliary Progress Estimation

Results: Progress Monitoring

<START> Walk up stairs . At top of stairs [turn
left and walk to bed lamp . Turn left and enter closet .

Step:3/6

Progtess Monitor: 0.44
«.H"

Stop at rug . <EOS>

,E - p '

Jil |
ﬁ ‘ [BPE7 iy Do~

<START> Walk up stairs . At top of stairs turn right . Walk straight to bedroom

left and [WalK to [B8d lamp || Turn left and enter closet . [SI6F ‘at rug . <EOS>

Step:4/6
Progress Monitor: 0.70

<START> Walk up stairs . At top of stairs turn right . Walk straight to bedroom .
left and walk to bed lamp [. Turn left and 'enter [BI688E . |88 at rug . <EOS>

Step: 6/6
_ Progress Monitor: 0.95

Language Technologies Institute

<START> Enter bedroom from balcony , turn left and
straight across rug to room . Stop in doorway in front of rug . <Ef

Step:3/6
Progress Monitor: 0.60

<START> Enter bedroom from balcony , turn left and enter hallway , turn right and walk

straight across rug to room | : . ‘Stop in [doorway |in [front a [fig . <cos>

> Enter bedroom from balcony , turn left and enter hallway , turn right and walk

straight across rug to room . [Siop [il [d6oRway i [fent . [fig § <eos>

Step: 6/ 6
Progress Monitor: 0.82




New Directions:
Co-Learning
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Regularizing with Skeleton Seqs

= Better unimodal representation by regularizing using
a different modality

Yy Decoded Skeleton Sequence
‘ SR Runnin
-ﬂ= (0 6% d l
rCIasEg"scsatlon Similarity = LSTM Encoder |
| Biking :
O
|
l \ / il AAA S 3 §
il s 1 I ‘
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\/ . .
5 Qhi . !
| ° f 3 .
| B g <
= ) : S
s dhi) = :
© e = I
2 t ? : LSTM Decoder
| T '
e e !
DCNN |
Input Skeleton Sequence
-1
‘ \Ut Unsupervised LSTM auto-encoder
) training on 3D joint trajectories
Regularized LSTM + DCNN

Non parallel data!

[B. Mahasseni and S. Todorovic, “Regularizing Long Short Term Memory with 3D Human-
Skeleton Sequences for Action Recognition,” in CVPR, 2016]
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Multimodal Cyclic Translation

Sentiment

e .

Encoder 1

“Today was a great day!”
Co-learning

Representation
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Taskonomy

Task-specific Modeling Transfer Modeling Taxonomy Solver Computed Taxonomy

Layout Normals Reshading . Layout Normals Reshading

U o A —_

2D Segm. 3D Keypoints 2.5D Segm

Autoencoding

AHP

Binary Integer -~ 2D Keypoints C. P.VaﬂlShmg Pts.

ammi () Cam. Pose
Frogn & Ui *_~ (nonfix)

Normals Ifpainting

gomotion
Scene S.

.)cclusion Edges
shing Object Class. (100)

biect Class. (1000) Semantic Segm.
Randor Proj.
--» Frozen 2.5D Segm: JC atie

Process overview. The steps involved in creating the taxonomy.

Zamir, Amir R., et al. "Taskonomy: Disentangling Task Transfer Learning." Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
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Associative Multichannel Autoencoder

= | earning representation through fusion and translation
Use associated word prediction to address data sparsity

5 .
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[Wang et al. Associative Multichannel Autoencoder for Multimodal Word
Representation, 2018]
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Grounding Semantics in Olfactory Perception

= Grounding language in vision, sound, and smell

Olfactory-Relevant Examples

MEN sim || SimLex-999 sim
bakery  bread | 0.96 || steak  meat 0.75
grass lawn 0.96 || flower violet | 0.70
dog terrier | 0.90 || tree maple | 0.55
bacon meat 0.88 || grass moss 0.50
oak wood | 0.84 || beach sea 0.47
daisy violet | 0.76 || cereal wheat | 0.38
daffodil  rose 0.74 || bread flour 0.33

Smell label

Chemical Compound

z
g 3 s 2
4 = B o
= £z 3
= &8 B
-
2 % = 8 2
] = - =
= 5 < = &
Melon v
Pineapple v
Licorice v
Anise v
Beer v

Table 2: A BoCC model.

[Kiela et al., Grounding Semantics in Olfactory Perception, ACL-IJCNLP,

2015]
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