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Reward learning using natural language

“Can is to the right of the bowl”

Use the learned visual detector to get rewards for 
policy learning

Tung et al. CVPR 2018

Goal: place the coca-cola to the right of the bowl 



Manually code the reward in a simulated 
or instrumented environment

action

agent

state
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environment

Tung et al. CVPR 2018

Reward learning using natural language

Goal: place the coca-cola to the right of the bowl 



Learn to detect from an RGB image when 
the goal is achieved 

observation
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Manually code the reward in a simulated 
or instrumented environment Tung et al. CVPR 2018

Reward learning using natural language

Goal: place the coca-cola to the right of the bowl 



“Can is to the right of the mug”

Reward learning using natural language

Modeling Relationships in Referential Expressions with Compositional Modular Networks, Ronghang et al. Modeling Relationships in Referential Expressions with Compositional Modular Networks, Ronghang et al. 
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Modeling Relationships in Referential Expressions with Compositional Modular Networks, Ronghang et al. 

“Can is to the right of the mug”

reward detector

Reward learning using natural language



Learned reward detector

sc
or

e

``can is to the right of the book”

 Learned policy

“Can is to the right of the mug”

reward detector

Reward learning using natural language



Reward learning using natural language

Our conclusions: 
• the reward detector could not effectively generalize 

across camera placements 
• could not provide shaped rewards
• could not discerne impossible goals for possible ones, 

e.g., “the mug inside the coca cola” versus “the coca 
cola inside the mug”

Tung et al. CVPR 2018

“Can is to the right of the mug”



• “After wading barefoot in the lake, Erik used his shirt to dry his 
feet.” 

• “After wading barefoot in the lake, Erik used his glasses to dry 
his feet.”

Symbol Grounding and Meaning: A Comparison of High-Dimensional and Embodied Theories of Meaning, Glenberg and Robertson, 2000

People can infer affordability of utterances.



• “He used the newspaper to protect his face from the wind.” 
• “He used the matchbox to protect his face from the wind.”

Symbol Grounding and Meaning: A Comparison of High-Dimensional and Embodied Theories of Meaning, Glenberg and Robertson, 2000

People can infer affordability of utterances.



People can answer million questions 
regarding the described situation.

“He used the newspaper to protect his face from the wind.”

• How many free hands the man has? 
• Is the newspaper in front or behind his eyes? 
• Can the newspaper be a single page? 
• Is he holding the newspaper? 
• Is he lying on top of the newspaper? 
• Is the newspaper protecting also his neck from the 

wind? His feet?

Symbol Grounding and Meaning: A Comparison of High-Dimensional and Embodied Theories of Meaning, Glenberg and Robertson, 2000



…cannot answer *basic* questions

Computational models of 
language and vision

Where are the arms sitting? Can the fridge door close? Can a baby 
hold two bottles? Can a baby hold three bottles? Does a baby 
disappear when mom walks in front? Is mom or baby taller?



• “The bowl inside the cube” 
• “The cube inside the bowl”

Symbol Grounding and Meaning: A Comparison of High-Dimensional and Embodied Theories of Meaning, Glenberg and Robertson, 2000

…cannot infer affordbility of language 
uttrances

Computational models of language 
and vision



• Words and phrases index to objects in the world or 
to prototypical symbols of those objects

• We derive affordance from those objects
• The derived affordances constrain the way ideas 

can be coherently combined

Symbol Grounding and Meaning: A Comparison of High-Dimensional and Embodied Theories of Meaning, Glenberg and Robertson, 2000

People can infer affordability of utterances.



Simulation Semantics

Embodiment, simulation and meaning, Bergen, How reading comprehension is embodied and why that matters , Glenberg, Grounding 
language in action, Glenberg and Kaschak, Grounding Meaning in Affordances, Glenberg 

We understand utterances by simulating 
their content, using similar constucts to 

perception and control



Language grounding to visual cues

2D boxes or 2D CNN activations do not 
have any affordability attached

They are themselves ungrounded :-(



Affordandable visual representations

We seek visual feature representations to ground NL 
onto that obey basic spatial common sense 
constraints:
• Objects have 3D extent
• Objects do not interpenetrate in 3D
• Objects come in regular sizes
• Objects persist over time



Geometry-Aware Recurrent Networks

t
R, T

1.Hidden state: 3D feature maps
2.Egomotion-stabilized hidden state updates

Ricson ChenFish Tung



2D RNNs (conv-LSTMs/GRUs)
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Architecture



Architecture



Unprojection (2D to 3D)



Unprojection (2D to 3D)



Unprojection (2D to 3D)



Unprojection (2D to 3D)



Unprojection (2D to 3D)



Architecture



Egomotion-stabilized memory update

Unprojection Rotation

3D feature memory

cross convolution

Relative Rotation R



Hidden state 
update

Egomotion-stabilized memory update

Unprojection

ht ht+1

Rotation

−R



Geometry-Aware Recurrent Networks 
(GRNNs)

H × W × D × C



Geometry-Aware Recurrent Networks 
(GRNNs)

H × W × D × C



Training GRNNs

1.Supervised for 3D object detection

2.Self-supervised for view prediction



Architecture



RPN

3D Object Detection
Input: the 3D latent feature map
Output: 3D boxes and segmentations for the objects



Results - 3D object detection

# of input views



Results - 3D object detection

# of input views



Results - 3D object detection

# of input views



# of input views

Object permanence emerges 

• Objects persist over time, objects have 3D extent



t

View prediction

R, t

Learning spatial common sense with geometry-aware RNNs, Tung et al. 2019



rotate to query view

View prediction

View prediction

project 



GRNNs GQN [1]Input views

Results - view prediction

1.Neural scene representation and rendering DeepMind, Science, 2018
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Results - view prediction

GRNNs GQN [1]Input views

1.Neural scene representation and rendering DeepMind, Science, 2018



Learn to associate natural language utterances with 
3D feature representations of the scene described.

Embodied language grounding



1. We consider an embodied agent that can see a scene 
from multiple viewpoints

“The green rubber cylinder is on the right of the blue bowl”



1. We consider an embodied agent that can see a scene 
from multiple viewpoints

“The green rubber cylinder is on the right of the blue bowl”



2. Our agent learns to map an RGB image to a set of 3D 
feature maps by training GRNNs to predict views

“The green rubber cylinder is on the right of the blue bowl”



“The green rubber cylinder is 
on the right of the blue bowl”



“The green rubber cylinder is 
on the right of the blue bowl”



What: 
Where: 

“The green rubber cylinder is 
on the right of the blue bowl”



1. We consider an embodied agent that can see a scene from multiple 
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“The green rubber cylinder is 
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“The green rubber cylinder is 
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1. We consider an embodied agent that can see a scene from multiple 
viewpoints



2. Our agent learns to map an RGB image to a set of 3D feature maps 
by training GRNNs to predict views

“The green rubber cylinder is 
on the right of the blue bowl”



3. Our agent maps noun phrases to object-centric 3D feature maps

green N(0,1) Rubber N(0,1) Cylinder N(0,1)

Gated  
pointwise 
product

Color VAE Attribute VAE Shape VAE

3D object feature

“The green rubber cylinder is 
on the right of the blue bowl”



3. Our agent maps noun phrases to object-centric 3D feature maps

“The green rubber cylinder is 
on the right of the blue bowl”
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3D object feature

green N(0,1)

Color VAE

Blue N(0,1) N(0,1) Bowl N(0,1)

Gated  
pointwise 
product

Color VAE Attribute VAE Shape VAE
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4. Our agent maps spatial expressions to relative 3D offsets

“The green rubber cylinder is 
on the right of the blue bowl”

green N(0,1) Rubber N(0,1) Cylinder N(0,1)

Gated  
pointwise 
product

Color VAE Attribute VAE Shape VAE

3D object feature
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Gated  
pointwise 
product

Color VAE Attribute VAE Shape VAE

3D object feature

right N(0,1)

Encode position

+

Position VAE

prev. object

position


(or 0,0,0 for 
 first object)



5. Our agent populates a 3D canvas with the predicted object tensors 
adn their relative offsets
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“The green rubber cylinder is 
on the right of the blue bowl”

5. Our agent populates a 3D canvas with the predicted object tensors 
adn their relative offsets
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on the right of the blue bowl”

5. Our agent populates a 3D canvas with the predicted object tensors 
adn their relative offsets



6. The generated canvas when projected should match the RGB 
image views

green N(0,1) Rubber N(0,1) Cylinder N(0,1)
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“The green rubber cylinder is 
on the right of the blue bowl”



Multimodality in appearance

cylinder

sphere



View Angle 1 View Angle 2 View Angle 3

View Angle 1
View Angle 2 View Angle 3

 “green sphere to the left behind of blue sphere”

“red sphere front left of blue cylinder”

Multimodality in spatial arrangements



“cyan sphere to the left of red cube” “cyan cylinder to the left of red  
sphere to the front of green sphere”

“red cylinder to the front of red sphere  
to the left-front of blue sphere”

“blue sphere to the left front of green cube” “cyan cylinder to the front of yellow cube”

“cyan cylinder to the left front of yellow 
sphere to the behind of   

green sphere to the front of blue  
sphere to the front of gray cylinder to the 

behind of red sphere”

Scene imagination



Scene imagination

“Red Rubber Cylinder to the 
left front of Blue Rubber Cube 

to the left front of Green 
Rubber Cylinder to right front of 

Blue Rubber Cube”

“Red Rubber Cube to the left front 
of the Blue Rubber Sphere to the 
right front of Cyan Metal Cylinder”

Neural 
rendering

Blender 
rendering

• Neural rendering: project the 3D feature maps using our learned project+RGB 
decoder neural module 

• Blender rendering: use the object-centric 3D feature maps to retrieve nearest 3D 
mesh neighbors from a training set, then arrange the retrieved meshes based on 
predicted 3D spatial offsets 



“Purple Cylinder to the left behind 
of Brown Cube to the left front of 

Purple Sphere” 

“Purple Cylinder to the left 
behind of Cyan Cube to the left 

front of Cyan Cube”

Scene imagination

• Neural rendering: project the 3D feature maps using our learned project+RGB 
decoder neural module 

• Blender rendering: use the object-centric 3D feature maps to retrieve nearest 3D 
mesh neighbors from a training set, then arrange the retrieved meshes based on 
predicted 3D spatial offsets 

Neural 
rendering

Blender 
rendering



Grounding arbitrarily long utterances
“yellow sphere to the left front of green sphere to the left behind of blue 

sphere to the left front of blue cylinder to the left behind of red cube to the 
left front of gray cube”

IOU= 0Object Out of Camera ViewIOU > 0.1

Top View



IOU= 0Object Out of Camera ViewIOU > 0.1

Top View

“gray sphere to the left front of blue sphere to the left front of 
red sphere to the left behind of cyan sphere to the left behind 

of green sphere”

IOU= 0Object Out of Camera ViewIOU > 0.1

Top View

Grounding arbitrarily long utterances
“yellow sphere to the left front of green sphere to the left behind of blue 

sphere to the left front of blue cylinder to the left behind of red cube to the 
left front of gray cube”



3D referential object detection



3D RPN

3D referential object detection



3D RPN

Red Metal Cylinde

Gated  
pointwis
e 

Color Attribute Shape

3D object feature

3D referential object detection



3D RPN

Red Rubbe Cylinde

Gated  
pointwis
e 

Color Attribute Shape

3D object feature

3D referential object detection



3D RPN

unary score

3D referential object detection



3D RPN

Spatial score

3D referential object detection



3D RPN

3D referential object detection
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Faster RCNN GRNNs            
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3D referential object detection
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Object region proposals



F1 score for detecting spatial referential expression

-0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F1 score

0.91
0.79

2D baseline Ours

Ronghang Hu et al.  Modeling relationships in referential expressions with compositional modular networks 

3D referential object detection



Instruction Following

``put the cube on the right of the bowl”

1. Referential 3D object 
detection

2. Goal generation: Predict 
relative 3D desired location 
for the object

3. Use LQR with Euclidean 
distance of current to goal 
location as the cost.



Grounding Language on 3D visual 
feature representations

• Objects have regular sizes: object size is 
disentangled from the camera viewpoint

• Objects have 3D extent
• Objects do not interpenetrate in 3D: during iterative 

scene generation we can detect 3D intersection and 
continue sampling valid configurations

• Objects persist over time



Next steps

• Grounding action descriptions
• Use intuitive physics and dynamics beyond static 

spatial constraints  

https://arxiv.org/pdf/1906.04161.pdf


Syed JavedMihir Prabhudesai Fish Tung

Thank you

• Embodied language grounding, Prabhudesai et al., arxiv 

• Reward Learning from Narrated Demonstrations , Tung et al., CVPR 2018

Adam Harley Max Sieb


