Interpretable Linear Modeling

Jeffrey M. Girard *Carnegie Mellon University*

Overview

Linear Modeling

What is linear modeling?

- Linear models (LM) are statistical prediction models with high interpretability
- They are best combined with a *small* number of *interpretable* features
- They allow you to quantify the *size* and *direction* of each feature's effect
- They allow you to isolate the *unique* effect of each feature
- LM incorporates regression, ANOVA, *t*-tests, and *F*-tests
- LM allows for multiple *X* (predictor or independent) variables
- LM allows for multiple *Y* (explained or dependent) variables
- LM assumes the Y variables are normally distributed (to avoid \rightarrow GLM)
- LM assumes the data points are independent (to avoid \rightarrow MLM)

Simple linear regression

• Linear regression is often presented with the following notation:

$$y_i = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi} + \epsilon_i$$

- *y* is a vector of observations on the explained variable
- *x* is a vector of observations on the predictor variable
- α is the intercept
- β are the slopes
- ϵ is a vector of normally distributed and independent residuals

Simple linear regression

- Instead, we will use the following (equivalent) notation
- This notation will make it easier to generalize LM

 $y_i \sim \text{Normal}(\mu_i, \sigma)$ Likelihood

$$\mu_i = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi} \qquad \text{Linear model}$$

- This can be read as *y* is normally distributed around μ_i with SD σ
- μ_i relates y_i to x_i and defines the "best fit" prediction line
- σ captures the residuals or errors when $y_i \neq \mu_i$

Estimating the regression coefficients

- The goal is to find the parameter values that minimize the residuals
 - In linear modeling, this means estimating α , β , and σ
- This can be accomplished in several different ways
 - Maximum likelihood (i.e., minimize the residual sum of squares)
 - Bayesian approximation (e.g., maximum a posteriori or MCMC)
- I will provide code for use in R's *lme4* and in Python's *statsmodels*
 - These both use maximum likelihood estimation by default
 - I also highly recommend MCMC (especially for MLM)

Simulated LM example dataset

Simulated Data of 150 YouTube Book Review Videos

Example of LM with intercept-only

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha$$

review_score ~ 1

	Variable	Estimate	95% CI
α	(Intercept)	6.51	[6.20, 6.83]
σ	Residual SD	1.94	

Deviance = 563.16, Adjusted $R^2 = 0.000$

Example of LM with binary predictor

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

review_score ~ 1 + is_critic

	Variable	Estimate	95% CI
α	(Intercept)	6.85	[6.46, 7.24]
β	is_critic	-0.87	[-1.50, -0.24]
σ	Residual SD	1.90	
	Deviance $= 536.1$	5, Adjuste	d $R^2 = 0.042$

Example of LM with continuous predictor

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

review_score ~ 1 + smile_rate

	Variable	Estimate	95% CI
α	(Intercept)	5.40	[4.90, 5.90]
β	smile_rate	1.15	[0.72, 1.57]
σ	Residual SD	1.78	
	Deviance $= 471.4$	3. Adiuste	$d R^2 = 0.157$

Example of LM with two predictors

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

$$\mu_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i}$$

review_score ~
1 + smile_rate + is_critic

	Variable	Estimate	95% CI
α	(Intercept)	5.71	[5.13, 6.29]
β_1	smile_rate	1.07	[0.65, 1.49]
β_2	is_critic	-0.61	[-1.20, -0.01]
σ	Residual SD	1.77	
	Deviance $= 458.6$	8, Adjuste	$d R^2 = 0.174$

Example of LM with interaction effect

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

 $\mu_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i}$

review_score ~ 1 +
smile_rate * is_critic

	Variable	Estimate	95% CI
α	(Intercept)	5.96	[5.31, 6.61]
β_1	smile_rate	0.83	[0.33, 1.34]
β_2	is_critic	-1.31	[-2.32, -0.30]
β_3	Interaction	0.79	[-0.13, 1.70]
σ	Residual SD	1.76	

Deviance = 449.88, Adjusted $R^2 = 0.185$

Generalized Linear Modeling

What is generalized linear modeling?

- Generalized linear modeling (GLM) is an extension of LM
- It allows LM to accommodate non-normally distributed *Y* variables
- Examples include variables that are: binary, discrete, and bounded
- This is accomplished using GLM families and link functions
- Families model the likelihood function using a specific distribution
- Link functions connect the linear model to the mean of the likelihood
- Link function also ensure that the mean is the "right" kind of number

Common GLM families and link functions

 $y_i \sim \text{Family}(\mu_i, \dots)$

$$link(\mu_i) = \alpha + \beta_1 x_{1i} + \dots + \beta_p x_{pi}$$

Family	Uses	Supports	Link Fu	inction
Normal	Linear data	\mathbb{R} : $(-\infty,\infty)$	Identity	μ
Gamma	Non-negative data (reaction times)	ℝ: (0,∞)	Inverse or Power	μ^{-1}
Poisson	Count data	Z: 0, 1, 2,	Log	$\log(\mu)$
Binomial	Binary data Categorical data	\mathbb{Z} : {0, 1} \mathbb{Z} : [0, <i>K</i>)	Logit	$\log\left(\frac{\mu}{1-\mu}\right)$

Simulated GLM example dataset

Simulated Data of 150 Romantic Couples' Interactions

Example of LM for binary data

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

divorced ~ 1 + satisfaction

	Variable	Estimate	95% CI
α	(Intercept)	0.98	[0.89, 1.07]
β	satisfaction	-0.22	[-0.25, -0.19]
σ	Residual SD	0.304	
	Deviance $= 13.70$), Adjusted	$R^2 = 0.617$

Example of GLM for binary data

 $y_i \sim \text{Binomial}(1, p_i)$

 $logit(p_i) = \alpha + \beta x_i$

divorced ~ 1 + satisfaction family = binomial(link = "logit")

	Variable	Estimate	95% CI
α	(Intercept)	3.52	[2.45, 4.87]
β	satisfaction	-1.78	[-2.40, -1.30]

Deviance = 82.04, Pseudo $R^2 = 0.664$

Note: Results are in transformed (i.e., logit) units

Example of LM for count data

$$y_i \sim \text{Normal}(\mu_i, \sigma)$$

$$\mu_i = \alpha + \beta x_i$$

interruptions ~ 1 + satisfaction

	Variable	Estimate	95% CI
α	(Intercept)	17.11	[15.76, 18.45]
β	satisfaction	-3.95	[-4.38, -3.52]
σ	Residual SD	4.61	
Deviance = 3143.62, Adjusted $R^2 = 0.688$			

Example of GLM for count data

 $y_i \sim \text{Poisson}(\lambda_i)$

$$\log(\lambda_i) = \alpha + \beta x_i$$

interruptions ~ 1 + satisfaction
family = poisson(link = "log")

	Variable	Estimate	95% CI
α	(Intercept)	3.16	[3.08, 3.24]
β	satisfaction	-0.77	[-0.83, -0.72]

Deviance = 325.24, Pseudo $R^2 = 0.895$

Note: Results are in transformed (i.e., log) units

Multilevel Modeling

What is multilevel modeling?

- MLM allows (G)LM to handle data points that are dependent/clustered
- This is problematic because data within a cluster are likely to be similar
- Effects (e.g., intercepts and slopes) may also differ between clusters

What is multilevel modeling?

- One approach would be to estimate effects across all clusters (complete pooling)
 - But this would require all clusters to be nearly identical, which they may not be
- Another would be to estimate effects for each cluster separately (no pooling)
 - But this would ignore similarities between clusters and may overfit the data
- The MLM approach tries to have the best of both approaches (partial pooling)
 - *MLM tries to learn the similarities and the differences between clusters*
 - It estimates effects for each individual cluster separately
 - But these effects are assumed to be drawn from a population of clusters
 - MLM explicitly models this population and the cluster-specific variation

What is multilevel modeling?

- MLM comes with several important benefits over single-level models
 - Improved estimates for repeat sampling
 - Improved estimates for imbalanced sampling
 - Estimates of variation across clusters
 - Avoid averaging and retain variation
 - Better accuracy and inference!
- Many have argued that "multilevel regression deserves to be the default approach"

Varying intercepts

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

 $\mu_i = \alpha_{\text{CLUSTER}[i]}$

 $\alpha_{\text{CLUSTER}} \sim \text{Normal}(\alpha, \sigma_{\text{CLUSTER}})$

- α captures the overall intercept (i.e., the mean of all clusters' intercepts)
- $\alpha_{\text{CLUSTER}[i]}$ captures each cluster's deviation from the overall intercept
- σ_{CLUSTER} captures how much variability there is across clusters' intercepts
- We now have an intercept for every cluster and a "population" of intercepts
- The model learns about each cluster's intercept from the population of intercepts
 - This pooling *within* parameters is very helpful for imbalanced sampling

Actual MLM example dataset

Real Data of 751 Smiles from 136 Subjects (Girard, Shandar, et al. 2019)

Complete pooling (underfitting)

No pooling (overfitting)

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

 $\mu_i = \alpha_{\text{PERSON}[i]}$

smile_int ~ 1 + factor(subject)

	Variable	Estimate	95% CI
$\alpha_{[1]}$	Intercept for P1	2.14	[1.93, 2.89]
α _[2]	Intercept for P2	2.17	[1.49, 2.85]
		•••	
σ	Residual SD	0.60	

Deviance = 1210.10

Partial pooling (ideal fit)

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

 $\mu_{i} = \alpha_{PERSON[i]}$ $\alpha_{PERSON} \sim \text{Normal}(\alpha, \sigma_{PERSON})$ smile_int ~ 1 + (1 | subject)

	Variable	Estimate	95% CI
α	(Intercept)	2.15	[2.09, 2.21]
σ_P	Intercept SD	0.27	
σ	Residual SD	0.60	

Deviance = 1458.81

Shrinkage in action

Varying intercepts and slopes

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

- $\mu_{i} = \alpha_{\text{CLUSTER}[i]} + \beta_{\text{CLUSTER}[i]} x_{i}$ $\begin{bmatrix} \alpha_{\text{CLUSTER}} \\ \beta_{\text{CLUSTER}} \end{bmatrix} \sim \text{MVNormal} \begin{pmatrix} \alpha \\ \beta, \mathbf{S} \end{pmatrix}$ $\mathbf{S} = \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix} \mathbf{R} \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix}$
- We can pool and learn from the covariance between varying intercepts and slopes
- We do this with a 2D normal distribution with means α and β and covariance matrix **S**
- We build **S** through matrix multiplication of the variances and correlation matrix **R**
- This is more complex but results in even better pooling: within and *across* parameters

MLM with varying intercepts and slopes

 $y_i \sim \text{Normal}(\mu_i, \sigma)$

 $\mu_{i} = \alpha_{\text{PERSON}[i]} + \beta_{\text{PERSON}[i]} x_{i}$ $\begin{bmatrix} \alpha_{\text{PERSON}} \\ \beta_{\text{PERSON}} \end{bmatrix} \sim \text{MVNormal} \begin{pmatrix} \alpha \\ \beta, \mathbf{S} \end{pmatrix}$

$$\mathbf{S} = \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix} \mathbf{R} \begin{pmatrix} \sigma_{\alpha} & 0 \\ 0 & \sigma_{\beta} \end{pmatrix}$$

smile_int ~ 1 + amused_sr +
 (1 + amused_sr| subject)

	Variable	Estimate	95% CI
α	(Intercept)	1.98	[1.91, 2.06]
β	amused_sr	0.12	[0.09, 0.15]
σ_{lpha}	Intercept SD	0.24	[0.17, 0.32]
$\sigma_{\!eta}$	Slope SD	0.04	[0.00, 0.08]
R	$\operatorname{corr}(\sigma_{\alpha},\sigma_{\beta})$	0.30	[-0.69, 0.96]
σ	Residual SD	0.57	[0.54, 0.60]

Depiction of varying intercepts and slopes

