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Linear Modeling



• Linear models (LM) are statistical prediction models with high interpretability
• They are best combined with a small number of interpretable features
• They allow you to quantify the size and direction of each feature's effect
• They allow you to isolate the unique effect of each feature

• LM incorporates regression, ANOVA, 𝑡𝑡-tests, and 𝐹𝐹-tests
• LM allows for multiple 𝑋𝑋 (predictor or independent) variables
• LM allows for multiple 𝑌𝑌 (explained or dependent) variables

• LM assumes the Y variables are normally distributed (to avoid → GLM)
• LM assumes the data points are independent (to avoid → MLM)
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What is linear modeling?



• Linear regression is often presented with the following notation:

𝑦𝑦𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖 + 𝜖𝜖𝑖𝑖

• 𝑦𝑦 is a vector of observations on the explained variable
• 𝑥𝑥 is a vector of observations on the predictor variable
• 𝛼𝛼 is the intercept
• 𝛽𝛽 are the slopes
• 𝜖𝜖 is a vector of normally distributed and independent residuals
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Simple linear regression



• Instead, we will use the following (equivalent) notation
• This notation will make it easier to generalize LM

𝑦𝑦𝑖𝑖 ~ Normal 𝜇𝜇𝑖𝑖 ,𝜎𝜎

𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖

• This can be read as 𝑦𝑦 is normally distributed around 𝜇𝜇𝑖𝑖 with SD 𝜎𝜎
• 𝜇𝜇𝑖𝑖 relates 𝑦𝑦𝑖𝑖 to 𝑥𝑥𝑖𝑖 and defines the "best fit" prediction line
• 𝜎𝜎 captures the residuals or errors when 𝑦𝑦𝑖𝑖 ≠ 𝜇𝜇𝑖𝑖
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Simple linear regression

Likelihood

Linear model



• The goal is to find the parameter values that minimize the residuals
• In linear modeling, this means estimating 𝛼𝛼, 𝛽𝛽, and 𝜎𝜎

• This can be accomplished in several different ways
• Maximum likelihood (i.e., minimize the residual sum of squares)
• Bayesian approximation (e.g., maximum a posteriori or MCMC)

• I will provide code for use in R's lme4 and in Python's statsmodels
• These both use maximum likelihood estimation by default
• I also highly recommend MCMC (especially for MLM)
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Estimating the regression coefficients



Simulated Data of 150 YouTube Book Review Videos
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Simulated LM example dataset



𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼

review_score ~ 1
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Example of LM with intercept-only

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 6.51 [6.20, 6.83]
𝜎𝜎 Residual SD 1.94

Deviance = 563.16, Adjusted 𝑅𝑅2 = 0.000



𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖

review_score ~ 1 + is_critic
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Example of LM with binary predictor

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 6.85 [6.46, 7.24]
𝛽𝛽 is_critic −0.87 [−1.50,−0.24]
𝜎𝜎 Residual SD 1.90

Deviance = 536.15, Adjusted 𝑅𝑅2 = 0.042



𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖

review_score ~ 1 + smile_rate
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Example of LM with continuous predictor

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 5.40 [4.90, 5.90]
𝛽𝛽 smile_rate 1.15 [0.72, 1.57]
𝜎𝜎 Residual SD 1.78

Deviance = 471.43, Adjusted 𝑅𝑅2 = 0.157



𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖

review_score ~ 
1 + smile_rate + is_critic
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Example of LM with two predictors

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 5.71 [5.13, 6.29]
𝛽𝛽1 smile_rate 1.07 [0.65, 1.49]
𝛽𝛽2 is_critic −0.61 [−1.20,−0.01]
𝜎𝜎 Residual SD 1.77

Deviance = 458.68, Adjusted 𝑅𝑅2 = 0.174



𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)
𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + 𝛽𝛽2𝑥𝑥2𝑖𝑖 + 𝛽𝛽3𝑥𝑥1𝑖𝑖𝑥𝑥2𝑖𝑖

review_score ~ 1 + 
smile_rate * is_critic
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Example of LM with interaction effect

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 5.96 [5.31, 6.61]
𝛽𝛽1 smile_rate 0.83 [0.33, 1.34]
𝛽𝛽2 is_critic −1.31 [−2.32,−0.30]
𝛽𝛽3 Interaction 0.79 [−0.13, 1.70]
𝜎𝜎 Residual SD 1.76

Deviance = 449.88, Adjusted 𝑅𝑅2 = 0.185



Generalized Linear Modeling



• Generalized linear modeling (GLM) is an extension of LM
• It allows LM to accommodate non-normally distributed 𝑌𝑌 variables
• Examples include variables that are: binary, discrete, and bounded

• This is accomplished using GLM families and link functions
• Families model the likelihood function using a specific distribution
• Link functions connect the linear model to the mean of the likelihood
• Link function also ensure that the mean is the "right" kind of number
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What is generalized linear modeling?



𝑦𝑦𝑖𝑖 ~ Family 𝜇𝜇𝑖𝑖 , …

link(𝜇𝜇𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽1𝑥𝑥1𝑖𝑖 + ⋯+ 𝛽𝛽𝑝𝑝𝑥𝑥𝑝𝑝𝑖𝑖
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Common GLM families and link functions

Family Uses Supports Link Function

Normal Linear data ℝ: (−∞,∞) Identity 𝜇𝜇

Gamma Non-negative data
(reaction times) ℝ: (0,∞) Inverse

or Power 𝜇𝜇−1

Poisson Count data ℤ: 0, 1, 2, … Log log(𝜇𝜇)

Binomial Binary data
Categorical data

ℤ: 0, 1
ℤ: [0,𝐾𝐾) Logit log

𝜇𝜇
1 − 𝜇𝜇
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Simulated GLM example dataset

Simulated Data of 150 Romantic Couples' Interactions



𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖

divorced ~ 1 + satisfaction
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Example of LM for binary data

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 0.98 [0.89, 1.07]
𝛽𝛽 satisfaction −0.22 [−0.25,−0.19]
𝜎𝜎 Residual SD 0.304

Deviance = 13.70, Adjusted 𝑅𝑅2 = 0.617



𝑦𝑦𝑖𝑖 ~ Binomial(1,𝑝𝑝𝑖𝑖)

logit(𝑝𝑝𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖
divorced ~ 1 + satisfaction

family = binomial(link = "logit")
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Example of GLM for binary data

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 3.52 [2.45, 4.87]
𝛽𝛽 satisfaction −1.78 [−2.40,−1.30]

Deviance = 82.04, Pseudo 𝑅𝑅2 = 0.664

Note: Results are in transformed (i.e., logit) units



𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖

interruptions ~ 1 + satisfaction
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Example of LM for count data

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 17.11 [15.76, 18.45]
𝛽𝛽 satisfaction −3.95 [−4.38,−3.52]
𝜎𝜎 Residual SD 4.61

Deviance = 3143.62, Adjusted 𝑅𝑅2 = 0.688



𝑦𝑦𝑖𝑖 ~ Poisson(𝜆𝜆𝑖𝑖)

log(𝜆𝜆𝑖𝑖) = 𝛼𝛼 + 𝛽𝛽𝑥𝑥𝑖𝑖
interruptions ~ 1 + satisfaction
family = poisson(link = "log")
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Example of GLM for count data

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 3.16 [3.08, 3.24]
𝛽𝛽 satisfaction −0.77 [−0.83,−0.72]

Deviance = 325.24, Pseudo 𝑅𝑅2 = 0.895

Note: Results are in transformed (i.e., log) units



Multilevel Modeling



• MLM allows (G)LM to handle data points that are dependent/clustered
• This is problematic because data within a cluster are likely to be similar
• Effects (e.g., intercepts and slopes) may also differ between clusters
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What is multilevel modeling?

Person 1
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• One approach would be to estimate effects across all clusters (complete pooling)
• But this would require all clusters to be nearly identical, which they may not be

• Another would be to estimate effects for each cluster separately (no pooling)
• But this would ignore similarities between clusters and may overfit the data

• The MLM approach tries to have the best of both approaches (partial pooling)
• MLM tries to learn the similarities and the differences between clusters
• It estimates effects for each individual cluster separately
• But these effects are assumed to be drawn from a population of clusters
• MLM explicitly models this population and the cluster-specific variation
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What is multilevel modeling?



• MLM comes with several important benefits over single-level models
• Improved estimates for repeat sampling
• Improved estimates for imbalanced sampling
• Estimates of variation across clusters
• Avoid averaging and retain variation
• Better accuracy and inference!

• Many have argued that "multilevel regression deserves to be the default approach"
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What is multilevel modeling?



𝑦𝑦𝑖𝑖 ~ Normal 𝜇𝜇𝑖𝑖 ,𝜎𝜎

𝜇𝜇𝑖𝑖 = 𝛼𝛼CLUSTER[𝑖𝑖]

𝛼𝛼CLUSTER ~ Normal(𝛼𝛼,𝜎𝜎CLUSTER)

• 𝛼𝛼 captures the overall intercept (i.e., the mean of all clusters' intercepts)
• 𝛼𝛼CLUSTER 𝑖𝑖 captures each cluster's deviation from the overall intercept
• 𝜎𝜎CLUSTER captures how much variability there is across clusters' intercepts
• We now have an intercept for every cluster and a "population" of intercepts
• The model learns about each cluster's intercept from the population of intercepts

• This pooling within parameters is very helpful for imbalanced sampling
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Varying intercepts
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Actual MLM example dataset

Real Data of 751 Smiles from 136 Subjects (Girard, Shandar, et al. 2019)
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Complete pooling (underfitting)

𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼

smile_int ~ 1

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 2.14 [2.10, 2.19]
𝜎𝜎 Residual SD 0.66

Deviance = 1495.8
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No pooling (overfitting)

𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼PERSON[𝑖𝑖]

smile_int ~ 1 + factor(subject)

Variable Estimate 95% CI

𝛼𝛼 1 Intercept for P1 2.14 [1.93, 2.89]
𝛼𝛼 2 Intercept for P2 2.17 [1.49, 2.85]
… … … …

𝜎𝜎 Residual SD 0.60

Deviance = 1210.10
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Partial pooling (ideal fit)

𝑦𝑦𝑖𝑖 ~ Normal(𝜇𝜇𝑖𝑖 ,𝜎𝜎)

𝜇𝜇𝑖𝑖 = 𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖

𝛼𝛼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ~ Normal 𝛼𝛼,𝜎𝜎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

smile_int ~ 1 + (1 | subject)

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 2.15 [2.09, 2.21]
𝜎𝜎𝑃𝑃 Intercept SD 0.27
𝜎𝜎 Residual SD 0.60

Deviance = 1458.81
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Shrinkage in action



𝑦𝑦𝑖𝑖 ~ Normal 𝜇𝜇𝑖𝑖 ,𝜎𝜎

𝜇𝜇𝑖𝑖 = 𝛼𝛼CLUSTER 𝑖𝑖 + 𝛽𝛽CLUSTER 𝑖𝑖 𝑥𝑥𝑖𝑖
𝛼𝛼CLUSTER
𝛽𝛽CLUSTER ~ MVNormal

𝛼𝛼
𝛽𝛽, 𝐒𝐒

𝐒𝐒 =
𝜎𝜎𝛼𝛼 0
0 𝜎𝜎𝛽𝛽

𝐑𝐑
𝜎𝜎𝛼𝛼 0
0 𝜎𝜎𝛽𝛽

• We can pool and learn from the covariance between varying intercepts and slopes
• We do this with a 2D normal distribution with means 𝛼𝛼 and 𝛽𝛽 and covariance matrix 𝐒𝐒
• We build 𝐒𝐒 through matrix multiplication of the variances and correlation matrix 𝐑𝐑
• This is more complex but results in even better pooling: within and across parameters
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Varying intercepts and slopes
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MLM with varying intercepts and slopes

𝑦𝑦𝑖𝑖 ~ Normal 𝜇𝜇𝑖𝑖 ,𝜎𝜎

𝜇𝜇𝑖𝑖 = 𝛼𝛼PERSON 𝑖𝑖 + 𝛽𝛽PERSON 𝑖𝑖 𝑥𝑥𝑖𝑖
𝛼𝛼PERSON
𝛽𝛽PERSON ~ MVNormal

𝛼𝛼
𝛽𝛽, 𝐒𝐒

𝐒𝐒 =
𝜎𝜎𝛼𝛼 0
0 𝜎𝜎𝛽𝛽

𝐑𝐑
𝜎𝜎𝛼𝛼 0
0 𝜎𝜎𝛽𝛽

smile_int ~ 1 + amused_sr + 
(1 + amused_sr| subject)

Deviance = 1458.81

Variable Estimate 95% CI

𝛼𝛼 (Intercept) 1.98 [1.91, 2.06]
𝛽𝛽 amused_sr 0.12 [0.09, 0.15]
𝜎𝜎𝛼𝛼 Intercept SD 0.24 [0.17, 0.32]
𝜎𝜎𝛽𝛽 Slope SD 0.04 [0.00, 0.08]

𝐑𝐑 corr 𝜎𝜎𝛼𝛼 ,𝜎𝜎𝛽𝛽 0.30 [−0.69, 0.96]

𝜎𝜎 Residual SD 0.57 [0.54, 0.60]
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Depiction of varying intercepts and slopes
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