Info 411 Machine Learning and Data Mining Lecture 10: Combining Multiple Learners

Brendon J. Woodford

17-Sep, 2019

BUSINESS SCHOOL

Department of Information Science

Rationale

- No Free Lunch theorem: There is no algorithm that is always the most accurate
- Generate a group of base-learners which when combined has higher accuracy
- ▶ Different learners use different:
 - ► Algorithms
 - Hyperparameters
 - Representations (Modalities)
 - ▶ Training sets
 - Subproblems

Using Different Algorithms

Combining base learners based on multiple algorithms
 E.g., Mix parametric methods with non-parametric ones
 Free us from the burden / decision of choosing a "right" one

Using different hyper-parameters

- ▶ Initial centres/membership in *k*-means
- Different k in k-nearest neighbour classifier / predictor
- Different number of hidden units in Multi-layer Perceptrons (MLP)s
- Initial weights in neural models such as Self Organising Maps (SOM)s/MLPs
- Different kernels, c values in Support Vector Machine (SVM)

Using different 'views'

- Different representations of the same input object
- Different types of sensory data or features (sensor fusion)

Examples:

- Multi-modal speech recognition (audio recognition assisted by lip shape analysis)
- Content-based image retrieval: using features of colour, texture and shape to assess the similarity of images
- Better to combine classifier decisions rather than concatenating features:
 - Simple concatenation gives higher dimensionality and results in more complex systems that are usually harder to train

Using different training sets

- Let weak base-learners each learn from a different input (sub)space
- Classifiers that are most "sure" will vote with more conviction
- Classifiers will be most "sure" about a particular part of the space
- > On average, do better than a single classifier!

Weak Classifiers: The Trade-Off

Simple (a.k.a. weak) learners are good:

- E.g., Naïve Bayes, logistic regression, decision stumps (or shallow decision trees).
- ▶ Perform slightly better than random chance. ($\varepsilon \leq 0.5$)
- ► Low variance, don't usually overfit.
- Simple (a.k.a. weak) learners are bad:
 - High bias, can't solve hard learning problems
- Often weak learners can be very useful!
 - ▶ How to make them work (positively)?
- The question: "Can a set of weak learners create a single strong learner?"

Voting¹

Linear combination:

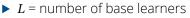
▶
$$y = \sum_{j=1}^{L} w_j d_{ji}$$

▶ $w_j \ge 0$ and $\sum_{j=1}^{L} w_j = 1$

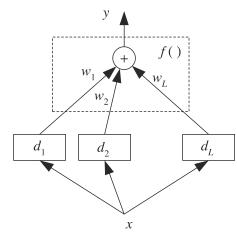
Classification:

$$\blacktriangleright \quad y_i = \sum_{j=1}^L w_j d_{ji}$$

where:



- d_{ji} = prediction of base learner M_j on input x
- w_j = weighting of vote by learner d_i
- f() = function used to combine the outputs of d_j



¹Sourced and reproduced from [Alpaydin;2010, p. 424].

What difference it makes

From a Bayesian perspective where $w_j \equiv P(M_j) \& d_{ji} = P(C_i | x, M_j)$:

$$P(C_i|x) = \sum_{\text{all models } M_j} P(C_i|x, M_j) P(M_j)$$

 \blacktriangleright If d_j are i.i.d:

$$E[y] = E\left[\sum_{j} \frac{1}{L}d_{j}\right] = \frac{1}{L}L \cdot E[d_{j}] = E[d_{j}]$$

Var(y) = Var $\left(\sum_{j} \frac{1}{L}d_{j}\right) = \frac{1}{L^{2}}$ Var $\left(\sum_{j} d_{j}\right) = \frac{1}{L^{2}}L \cdot$ Var $(d_{j}) = \frac{1}{L}$ Var (d_{j})

Bias does not change & variance decreases by L

 If dependent, variance & error increase with positive correlation,

$$\operatorname{Var}\left(y\right) = \frac{1}{L^{2}} \operatorname{Var}\left(\sum_{j} d_{j}\right) = \frac{1}{L^{2}} \left[\sum_{j} \operatorname{Var}\left(d_{j}\right) + 2\sum_{j} \sum_{i < j} \operatorname{Cov}\left(d_{j}, d_{i}\right)\right]$$

Fixed Combination Rules²

Table: Classifier combination rules

Rule	Fusion function $f()$		
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$		
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$		
Median	$y_i = \text{median}_j d_{ji}$		
Minimum	$y_i = \min_j d_{ji}$		
Maximum	$y_i = \max_j d_{ji}$		
Product	$y_i = \prod_j d_{ji}$		

²Sourced and adapted from [Alpaydin;2010, p. 425].

Fixed Combination Rules³ (continued)

Table: Example of combination rules on three learners and three classes.

	$ C_1 $	$ C_2 $	<i>C</i> ₃
d_1	0.2	0.5	0.3
<i>d</i> ₂	0.0	0.6	0.4
<i>d</i> ₃	0.4	0.4	0.2
Sum	0.2	0.5	0.3
Median	0.2	0.5	0.4
Minimum	0.0	0.4	0.2
Maximum	0.4	0.6	0.4
Product	0.0	0.12	0.024

³Sourced and adapted from [Alpaydin;2010, p. 425].

Bagging

- ► Use *bootstrapping* to generate *L* training sets and train one base-learner with each [Brieman;1996]
- Given a training set X of size N, draw N instances randomly from X with replacement into X_i .
- ▶ Use voting (average or median with regression) in testing
- ► Unstable algorithms profit from bagging ⇒ reduced variance:
 - Decision Trees
 - Multi-Layer Perceptron (MLP)
 - Condensed k-NN

Boosting

- In bagging, the construction of complementary weak learners is left to chance and to the instability of the learning methods.
- How to:
 - Force weak-learners to learn about different parts of the input space?
 - Weigh the votes of different weak learners?
- Answer:
 - Use all the training data set instead of taking repeated samples of it.
 - Assign a weighting to each data example based on the outcome of previous weak learner's classification of it.

Boosting actively generates complementary base-learners by training the next learner on the mistakes of the previous learners.

Boosting – the idea⁴

Specify *T* weak learners for our ensemble.

- On each iteration t:
 - Fit h_t (weak-learner) to (reweighted) training data.
 - Learn a hypothesis h_t
 - A strength for this hypothesis α_t
 - Weight each training example by how incorrectly it was classified.
- Then let learned weak learners vote on the class of a new data example.
- Introducing Adaptive Boosting (AdaBoost) [Freund and Schapire;1996].

⁴Description of algorithm on next slide sourced and reproduced from [Schapire;2013, p. 38].

The AdaBoost Algorithm

1 Given: $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X, y_i \in \{-1, +1\}$; 2 for i = 1, ..., m do Initialise $D_1(i) = 1/m$; з ₄ end 5 for t = 1, ..., T do Fit weak learner h_t to the training data using weights $D_t(i)$; 6 Compute $\varepsilon_t = \sum_{i=1}^m D_t(i) [h_t(x_i) \neq y_i];$ 7 Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_t}{\varepsilon_t} \right);$ 8 for i = 1, ..., m do 9 Update $D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t};$ 10 where Z_t is a normalization factor s.t. $\sum_{i=1}^{m} D_{t+1}(i) = 1;$ 11 end 12 13 end /* Output the final hypothesis (strong learner)

*/

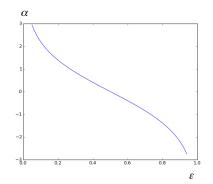
14
$$H(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right);$$

Inside AdaBoost

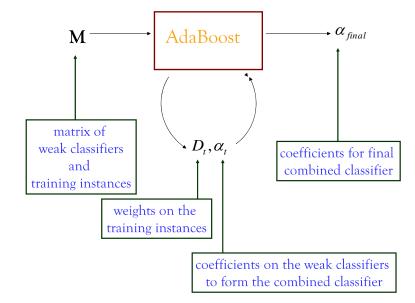
- ▶ The distribution D_t is updated with the effect of increasing the weight of examples misclassified by h_t , and decreasing the weight of correctly classified examples.
- Thus, the weight tends to concentrate on "hard" examples.
- The final hypothesis *H* is a weighted majority vote of the *T* weak hypotheses where α_t is the weight assigned to h_t .

Inside AdaBoost (continued)

- Requires weak learners (ε < 0.5)
- Smaller ε gives a higher α value
- Accurately classified examples get less weight
- "Hard" examples get more chances in further training



Inside AdaBoost (continued)



Application: Face Detection⁵

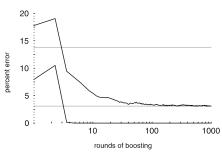


Info 411, Machine Learning and Data Mining

Performance?⁶

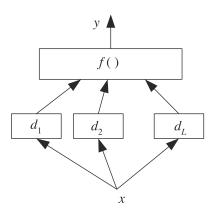
Boosting is often rather robust to over-fitting:

- Testing performance continues to decrease even when training error becomes zero
- Hundreds of papers published using AdaBoost
- Obes not maximise classification margins [Rudin et al.;2004]



⁶Sourced and reproduced from [Schapire;2013, p. 41].

- An extension of voting: combination of d_i can be non-linear
- Combiner f () is another learner [Wolpert;1992]



Info 411, Machine Learning and Data Mining

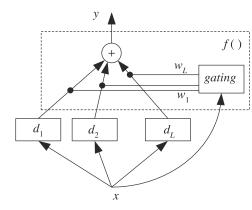
⁷Sourced and reproduced from [Alpaydin;2010, p. 436].

Fine-Tuning an Ensemble

- Given an ensemble of dependent classifiers, do not use it as is, try to get independence
- Subset selection: Forward (growing)/Backward (pruning) approaches to improve accuracy/diversity/independence
- Train metaclassifiers: From the output of correlated classifiers, extract new combinations that are uncorrelated. E.g., with PCA get "eigenlearners"
- Similar to *feature selection* vs. *feature extraction*

Mixture of Experts (MoE)⁸

- Voting where weights are input-dependent (gating): $y = \sum_{j=1}^{L} w_j d_j$
- Experts or gating can be non-linear [Jacobs et al.;1991]



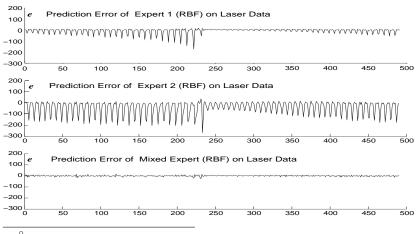
Info 411, Machine Learning and Data Mining

⁸Sourced and reproduced from [Alpaydin;2010, p. 434].

MoE Prediction of Chaotic Time Series⁹

 RBF / MLP experts' prediction combined with an on-line Hidden Markov Model (HMM)

HMM state-transition modelled by a MLP



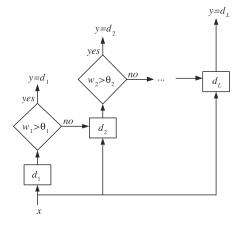
⁹Sourced and reproduced from [Wang et al.;2003, p. 13].

17-Sep, 2019

Info 411, Machine Learning and Data Mining

Cascading¹⁰

- Classifiers associated with confidence w_i
- Use d_j only if preceding ones are not confident enough
- Cascade learners: simple ones for majority of data; complex ones for minorities
- Generate "rules"



¹⁰Sourced and reproduced from [Alpaydin;2010, p. 439].

Random Forests (RF)¹¹

- Two layers of randomness introduced to a decision-tree based bagging approach:
 - Bagging: create new training sets by random sampling with replacement; aggregation – parallel combination of learners independently trained on distinct bootstrap samples
 - Final prediction is the mean prediction (regression) or class with maximum votes (classification)
 - Rather than using the full attribute set to determine each split in decision tree, RF selects a random subset of the predictors for each split
- Generalisation error of the forest converges as the number of trees in the forest becomes large

¹¹ More information on this available from [Brieman;2001].

Recap

Chapter 17 [Alpaydin;2010]

Freund & Schapire, A Short Introduction to Boosting

http://www.yorku.ca/gisweb/eats4400/boost.pdf¹²

"No Free Lunch Theorems"

http://www.no-free-lunch.org¹³

Random Forests [Brieman;2001]

¹²Last accessed 15th September, 2019.

¹³ Last accessed 15th September, 2019.

References

📎 E. Alpaydin Introduction to Machine Learning, 2nd Edition The MIT Press: Cambridge, Massachusetts, 2010

🔒 L. Brieman

"Bagging Predictors" Machine Learning, 24(2): 123-140, 1996

🔒 L. Brieman

"Random Forests" Machine Learning, 45(1): 5–32, 2001

Y. Freund & R. E. Schapire "Experiments with a new boosting algorithm" International Conference on Machine Learning (ICML), 148-156, 1996

References (continued)

- R. A. Jacobs, M. I. Jordan, S. J. Nowlan, & G. E. Hinton "Adaptive Mixtures of Local Experts" Neural Computation, 3: 79–87, 1991
- C. Rudin, I. Daubechies, & R. E. Schapire
 "The Dynamics of AdaBoost: Cyclic Behavior and Convergence of Margins"
 Journal of Machine Learning Research, 5: 1557–1595, 2004

📔 R. E. Schapire

"Explaining AdaBoost" In *Empirical Inference*, B. Schölkopf et al. (eds.), 37–51 Springer-Verlag Berlin Heidelberg, 2013

References (continued)

P. Viola & M. Jones

"Rapid Object Detection Using a Boosted Cascade of Simple Features"

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 511–518, 2001

 X. Wang, P. Whigham, & D. Deng
 "Time-line Hidden Markov Experts and its Application in Time Series Prediction"
 Technical Report 2003/03, University of Otago, New Zealand

D. H. Wolpert
 "Stacked Generalization"
 Neural Networks, 5(2): 241–259, 1992