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Rationale

▶ No Free Lunch theorem: There is no algorithm that is
always the most accurate

▶ Generate a group of base-learners which when combined
has higher accuracy

▶ Different learners use different:
▶ Algorithms
▶ Hyperparameters
▶ Representations (Modalities)
▶ Training sets
▶ Subproblems
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Using Different Algorithms

▶ Combining base learners based on multiple algorithms
▶ E.g., Mix parametric methods with non-parametric ones

▶ Free us from the burden / decision of choosing a “right”
one
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Using different hyper-parameters

▶ Initial centres/membership in 𝑘-means
▶ Different 𝑘 in 𝑘-nearest neighbour classifier / predictor
▶ Different number of hidden units in Multi-layer

Perceptrons (MLP)s
▶ Initial weights in neural models such as Self Organising

Maps (SOM)s/MLPs
▶ Different kernels, 𝑐 values in Support Vector Machine

(SVM)
▶ …
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Using different ‘views’

▶ Different representations of the same input object
▶ Different types of sensory data or features (sensor fusion)
▶ Examples:

▶ Multi-modal speech recognition (audio recognition
assisted by lip shape analysis)

▶ Content-based image retrieval: using features of colour,
texture and shape to assess the similarity of images

▶ Better to combine classifier decisions rather than
concatenating features:

▶ Simple concatenation gives higher dimensionality and
results in more complex systems that are usually harder to
train
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Using different training sets

▶ Let weak base-learners each learn from a different input
(sub)space

▶ Classifiers that are most “sure” will vote with more
conviction

▶ Classifiers will be most “sure” about a particular part of the
space

▶ On average, do better than a single classifier!
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Weak Classifiers: The Trade-Off

▶ Simple (a.k.a. weak) learners are good:
▶ E.g., Naïve Bayes, logistic regression, decision stumps (or

shallow decision trees).
▶ Perform slightly better than random chance. (𝜀 ≤ 0.5)
▶ Low variance, don’t usually overfit.

▶ Simple (a.k.a. weak) learners are bad:
▶ High bias, can’t solve hard learning problems

▶ Often weak learners can be very useful!
▶ How to make them work (positively)?

▶ The question: “Can a set of weak learners create a single
strong learner?”
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Voting1
▶ Linear combination:

▶ 𝑦 =
𝐿
∑
𝑗=1

𝑤𝑗𝑑𝑗𝑖

▶ 𝑤𝑗 ≥ 0 and
𝐿
∑
𝑗=1

𝑤𝑗 = 1

▶ Classification:

▶ 𝑦𝑖 =
𝐿
∑
𝑗=1

𝑤𝑗𝑑𝑗𝑖

▶ where:
▶ 𝐿 = number of base learners
▶ 𝑑𝑗𝑖 = prediction of base

learner𝑀𝑗 on input 𝑥
▶ 𝑤𝑗 = weighting of vote by

learner 𝑑𝑗
▶ 𝑓() = function used to

combine the outputs of 𝑑𝑗
1Sourced and reproduced from [Alpaydin;2010, p. 424].
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What difference it makes
▶ From a Bayesian perspective where 𝑤𝑗 ≡ 𝑃(𝑀𝑗) &

𝑑𝑗𝑖 = 𝑃(𝐶𝑖|𝑥,𝑀𝑗):
𝑃(𝐶𝑖|𝑥) = ∑

all models 𝑀𝑗

𝑃(𝐶𝑖|𝑥,𝑀𝑗)𝑃(𝑀𝑗)

▶ If 𝑑𝑗 are i.i.d:

𝐸 [𝑦] = 𝐸 [∑
𝑗

1
𝐿𝑑𝑗] =

1
𝐿𝐿 ⋅ 𝐸 [𝑑𝑗] = 𝐸 [𝑑𝑗]

Var (𝑦) = Var(∑
𝑗

1
𝐿𝑑𝑗) =

1
𝐿2 Var(∑

𝑗
𝑑𝑗) =

1
𝐿2𝐿⋅Var (𝑑𝑗) =

1
𝐿Var(dj)

Bias does not change & variance decreases by 𝐿
▶ If dependent, variance & error increase with positive

correlation,

Var (𝑦) = 1
𝐿2 Var(∑

𝑗
𝑑𝑗) =

1
𝐿2 [∑𝑗

Var (𝑑𝑗) + 2∑
𝑗
∑
𝑖<𝑗

Cov (𝑑𝑗, 𝑑𝑖)]
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Fixed Combination Rules2

Table: Classifier combination rules

Rule Fusion function 𝑓 ()

Sum 𝑦𝑖 =
1
𝐿
∑𝐿

𝑗=1 𝑑𝑗𝑖
Weighted sum 𝑦𝑖 = ∑𝑗 𝑤𝑗𝑑𝑗𝑖, 𝑤𝑗 ≥ 0,∑𝑗 𝑤𝑗 = 1
Median 𝑦𝑖 = median𝑗𝑑𝑗𝑖
Minimum 𝑦𝑖 = min𝑗𝑑𝑗𝑖
Maximum 𝑦𝑖 = max𝑗𝑑𝑗𝑖
Product 𝑦𝑖 =∏𝑗 𝑑𝑗𝑖

2Sourced and adapted from [Alpaydin;2010, p. 425].
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Fixed Combination Rules3 (continued)

Table: Example of combination rules on three learners and three
classes.

𝐶1 𝐶2 𝐶3
𝑑1 0.2 0.5 0.3
𝑑2 0.0 0.6 0.4
𝑑3 0.4 0.4 0.2

Sum 0.2 0.5 0.3
Median 0.2 0.5 0.4
Minimum 0.0 0.4 0.2
Maximum 0.4 0.6 0.4
Product 0.0 0.12 0.024

3Sourced and adapted from [Alpaydin;2010, p. 425].
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Bagging

▶ Use bootstrapping to generate 𝐿 training sets and train
one base-learner with each [Brieman;1996]

▶ Given a training set 𝑋 of size 𝑁 , draw 𝑁 instances
randomly from 𝑋 with replacement into 𝑋𝑖.

▶ Use voting (average or median with regression) in testing
▶ Unstable algorithms profit from bagging⇒ reduced

variance:
▶ Decision Trees
▶ Multi-Layer Perceptron (MLP)
▶ Condensed 𝑘-NN
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Boosting

▶ In bagging, the construction of complementary weak
learners is left to chance and to the instability of the
learning methods.

▶ How to:
▶ Force weak-learners to learn about different parts of the

input space?
▶ Weigh the votes of different weak learners?

▶ Answer:
▶ Use all the training data set instead of taking repeated

samples of it.
▶ Assign a weighting to each data example based on the

outcome of previous weak learner’s classification of it.
▶ Boosting actively generates complementary base-learners

by training the next learner on the mistakes of the
previous learners.
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Boosting – the idea4

▶ Specify 𝑇 weak learners for our ensemble.
▶ On each iteration 𝑡:

▶ Fit ℎ𝑡 (weak-learner) to (reweighted) training data.
▶ Learn a hypothesis – ℎ𝑡
▶ A strength for this hypothesis – 𝛼𝑡
▶ Weight each training example by how incorrectly it was

classified.
▶ Then let learned weak learners vote on the class of a new

data example.
▶ Introducing Adaptive Boosting (AdaBoost) [Freund and Schapire;1996].

4Description of algorithm on next slide sourced and reproduced from [Schapire;2013, p. 38].
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The AdaBoost Algorithm
1 Given: (𝑥1, 𝑦1) , … , (𝑥𝑚, 𝑦𝑚)where 𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ {−1,+1};
2 for 𝑖 = 1, … ,𝑚 do
3 Initialise 𝐷1 (𝑖) = 1/𝑚;
4 end
5 for 𝑡 = 1, … , 𝑇 do
6 Fit weak learner ℎ𝑡 to the training data using weights 𝐷𝑡(𝑖);

7 Compute 𝜀𝑡 =
𝑚
∑
𝑖=1

𝐷𝑡(𝑖) [ℎ𝑡 (𝑥𝑖) ≠ 𝑦𝑖];

8 Choose 𝛼𝑡 =
1
2

ln ( 1−𝜀𝑡
𝜀𝑡

);
9 for 𝑖 = 1, … ,𝑚 do
10 Update 𝐷𝑡+1 (𝑖) =

𝐷𝑡(𝑖) exp(−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖))
𝑍𝑡

;

11 where 𝑍𝑡 is a normalization factor s.t.
𝑚
∑
𝑖=1

𝐷𝑡+1(𝑖) = 1;

12 end
13 end

/* Output the final hypothesis (strong learner) */

14 𝐻 (𝑥) = sgn (
𝑇
∑
𝑡=1

𝛼𝑡ℎ𝑡 (𝑥));



Inside AdaBoost

▶ The distribution 𝐷𝑡 is updated with the effect of increasing
the weight of examples misclassified by ℎ𝑡, and decreasing
the weight of correctly classified examples.

▶ Thus, the weight tends to concentrate on “hard” examples.
▶ The final hypothesis 𝐻 is a weighted majority vote of the 𝑇

weak hypotheses where 𝛼𝑡 is the weight assigned to ℎ𝑡.
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Inside AdaBoost (continued)

▶ Requires weak learners (𝜀 <
0.5)

▶ Smaller 𝜀 gives a higher 𝛼
value

▶ Accurately classified examples
get less weight

▶ “Hard” examples get more
chances in further training
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Inside AdaBoost (continued)

final

ttD ,
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Application: Face Detection5

5Sourced and reproduced from [Viola and Jones;2001, p. 514 & p. 518].
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Performance?6

▶  Boosting is often rather robust
to over-fitting:

▶ Testing performance continues
to decrease even when training
error becomes zero

▶  Hundreds of papers published
using AdaBoost

▶  Does not maximise
classification margins [Rudin et al.;2004]

6Sourced and reproduced from [Schapire;2013, p. 41].
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Stacking7

▶ An extension of voting:
combination of 𝑑𝑖 can be
non-linear

▶ Combiner 𝑓 () is another
learner [Wolpert;1992]

7Sourced and reproduced from [Alpaydin;2010, p. 436].
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Fine-Tuning an Ensemble

▶ Given an ensemble of dependent classifiers, do not use it
as is, try to get independence

▶ Subset selection: Forward (growing)/Backward (pruning)
approaches to improve accuracy/diversity/independence

▶ Train metaclassifiers: From the output of correlated
classifiers, extract new combinations that are
uncorrelated. E.g., with PCA get “eigenlearners”

▶ Similar to feature selection vs. feature extraction
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Mixture of Experts (MoE)8

▶ Voting where weights are
input-dependent (gating):

𝑦 =
𝐿
∑
𝑗=1

𝑤𝑗𝑑𝑗

▶ Experts or gating can be
non-linear [Jacobs et al.;1991]

8Sourced and reproduced from [Alpaydin;2010, p. 434].

17-Sep, 2019 Info 411, Machine Learning and Data Mining 23 / 30



MoE Prediction of Chaotic Time Series9

▶ RBF / MLP experts’ prediction combined with an on-line
Hidden Markov Model (HMM)

▶ HMM state-transition modelled by a MLP
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9Sourced and reproduced from [Wang et al.;2003, p. 13].
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Cascading10

▶ Classifiers associated with
confidence 𝑤𝑖

▶ Use 𝑑𝑗 only if preceding ones
are not confident enough

▶ Cascade learners: simple
ones for majority of data;
complex ones for minorities

▶ Generate “rules”

10Sourced and reproduced from [Alpaydin;2010, p. 439].
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Random Forests (RF)11

▶ Two layers of randomness introduced to a decision-tree
based bagging approach:

▶ Bagging: create new training sets by random sampling with
replacement; aggregation – parallel combination of
learners independently trained on distinct bootstrap
samples

▶ Final prediction is the mean prediction (regression) or class
with maximum votes (classification)

▶ Rather than using the full attribute set to determine each
split in decision tree, RF selects a random subset of the
predictors for each split

▶ Generalisation error of the forest converges as the
number of trees in the forest becomes large

11More information on this available from [Brieman;2001].
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Recap

▶ Chapter 17 [Alpaydin;2010]

▶ Freund & Schapire, A Short Introduction to Boosting
▶ http://www.yorku.ca/gisweb/eats4400/boost.pdf12

▶ “No Free Lunch Theorems”
▶ http://www.no-free-lunch.org13

▶ Random Forests [Brieman;2001]

12Last accessed 15th September, 2019.
13Last accessed 15th September, 2019.
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