
Fall 2019: Classical Field Theory (PH6297)

Relativistic (tensor) fields, covariant fluids and covariant

electrodynamics

August 16, 2019

1 Tensor fields

So far we have looked at a single 4-variable, xµ, namely the position of single particle. This can be
generalized to multiple but still finite particles with an index labeling the particle, xµi (t). However
consider the case when we keep on adding new degrees of freedom so that at the end we have an infinite
number of variables, one at each point in space. Recall that such a collection of infinite number of variables
at each point in space is called a field. For example, consider any point on a string strung along the
horizontal direction, say along the x-axis. When the string is oscillating (transverse), at any instant of
time, t each point on the string will have a vertical displacement in the y-direction. We can denote the
vertical displacement by a field where we specify the location/point on the string, x and the time when
it occurs, say t by a displacement field

y(x, t).

Similarly for longitudinal waves through a gas, at each point in the gas, we have a density fluctatuon field,

∆ρ(x, t)

which is the change in density of the material from its normal equillibrium density.

Generalizing, we can define a “tensor fields” which means at each point in space we have a tensor-valued
quantity which is dependent on time. For example, a scalar field, φ(xµ) or a vector field, V µ(x). Then it
is natural to ask what is the transformation law for such tensor fields under a Lorentz transformation,

x→ x′ = Λx.

The answer becomes obvious after a little thought,

φ(x)→ φ′(x′) = φ(x),

V µ(x)→ V ′µ(x′) = Λµ ν V
ν(x),

ωµ(x)→ ω′µ(x) = Λµ
νων(x).

These transformations are often called the passive transformations.
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Often, we shall be interested in the active transformation of a tensor field after an LT, defined by,

∆V µ(x) = V ′µ(x)− V µ(x).

= Λµ ν V
ν(Λ−1x)− V µ(x)

= Λµ ν V
ν
(

Λβ
α xβ

)
− V µ(x)

= (δµν + ωµ ν) V ν
(
xα + ωβ

α xβ
)
− V µ(xα)

= ωµ ν V
ν(x) + ωβ

α xβ ∂αV
µ(xα)

= ωµ ν V
ν(x) + ωαβMαβV

µ, Mαβ = [xα ∂β − xβ ∂α]

Observe that M is similar form as the angular momentum operator in quantum mechanics (except the
i’s are missing).

2 Covariant Fluids

The fluid field is parametrized by the density, ρ(x, t) and the current j(x, t) = ρ(x, t)v(x, t), where v(x, t)
is the fluid velocity at x and at time t. Now, a well known equation for the fluid flow which represents
conservation of mass is the continuity equation,

∂ρ

∂t
+ ∇ · j = 0.

In the context of a fluid we usually talk about two frames, again the Lab frame, S and the fluid frame, S′

which is attached to a fluid element. Let’s choose the direction of velcoty of the fluid element to be the
common X-axis of both frames. Now let’s look at the expression for the density. In the lab frame this is,

ρ =
∆m

dx dy dz
.

In the fluid frame, S′, this is,

ρ′ =
∆m

dx′ dy′ dz′
.

Since in the Lab frame the moving fluid element will appear to be Lorentz contracted along the x-direction,

dx =
dx′

γ
,

while transverse length/dimensions of teh fluid element are unchanged,

dy = dy′, dz = dz′.

This imples one can write

ρ = γρ′,

jx = βcρ

= γβ(cρ′).
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Since the velocity of the fluid in the fluid rest frame is zero, we have, j′x = 0. So we can write down the
following pair of equations,

ρ = γρ′ + γ
β

c
j′x,

jx = γj′x + γβ(cρ′).

In matrix form, (
c ρ
jx

)
=

(
γ γβ
γβ γ

)(
c ρ′

j′x

)
,(

c ρ′

j′x

)
=

(
γ −γβ
−γβ γ

)(
c ρ′

j′x

)
This equation is identical to the Lorentz transformation for the position 4-vector. From this one can
deduce the existence of a new four vector for the fluid, the “4-current”,

jµ =
(
j0, j

)
, j0 = cρ.

The equation of continuity can then be written in a frame invariant form,

∂µj
µ = 0

with equal number of up and down indices. (We will revisit relativistic fluid dynamics in detail in Gravi-
tation and Cosmology course)

2.1 Electric current density

For a single point charge moving in a trajectory, x(t), we have the charge density,

ρ (t,x) = q δ3 (x− x(t)) , (1)

while the current density is,

j(t,x) = ρ(t,x) v(t) = q v(t) δ3 (x− x(t)) (2)

Of course both these expressions look non-covariant and we need to recast it in a form where the Lorentz
transformation is manifest i.e. as the components of a four vector, jµ. One could simply replace ev-
ery quantity in expressions (1, 2) by their respective four-vector counterpart, leading to the tentative
expression,

jµ(xν)
?
= q uµ(τ) δ4 (xν − xν(τ)) , (3)

where τ is some invariant parameter finally to be indentified with the proper time. However note that
we have one extra Dirac delta compared to the non-relativistic expression and instead of lab frame time,
t the parameter is τ . So this cannot be the correct answer. Let’s try to guess the answer by switiching
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back to t as a worldline parameter, then by comparing the rhs for µ = i i.e. by comparing to the rhs of
(2). We have the rhs of the tentative expression (3),

RHS = q
dxi(τ)

dτ
δ(t− t(τ)) δ3 (x− x(τ))

= q
dxi(τ(t))

dt

dt

dτ
δ(t− t(τ)) δ3 (x− x(τ))

= q
dxi(τ(t))

dt
δ(τ − τ(t) δ3(x− x(τ(t)))

= q
dxi(t)

dt
δ(τ − τ(t)) δ3(x− x(t)).

So now we can identify what is missing and what to do in order for the RHS to be same as the RHS of
(2). We just need to integrate over τ ! So we have the expression for the current density four-vector for a
point electric charge to be,

jµ(x) = q

ˆ
dτ uµ(τ) δ4 (xν − xν(τ)) . (4)

3 Classical Electrodynamics in Lorentz covariant form

The source of electric and magnetic fields is the charge density and current density. We already know
how to fuse them into a single relativistic entity, the 4-current,

jµ = (cρ, j) .

The rest is to figure out how do E, B combine into some relativistic format. The Maxwell’s equation in
terms of E,B

∇ ·E = ρ, ∇×B − 1

c

∂E

∂t
=

1

c
j,

∇ ·B = 0, ∇×E +
1

c

∂B

∂t
= 0.

The first line of two equations have the sources ρ and j on their RHS. The second line contains two
equations which are “sourceless”. So one thing is clear, there is a mismatch of number of degrees of
freedom on the LHS (E and B have 3 + 3 = 6 components) and RHS (source jµ have 4 components).
So we are missing something right now and a Lorentz covariant form is not obvious. To make further
progress, we will need to recall our old friends, the scalar and vector potentials,

E = −∇Φ− 1

c

∂A

t
,

B = ∇×A. (5)

Now it is pretty obvious that one can combine the scalar and vector potential into a single 4-vector
potential, usually called the Maxwell Gauge field,

Aµ = (Φ,A) .
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This means the covariant 4-potential is, Aµ = (Φ,−A).
Now looking at (5) seems to indicate now needs to act with the derivates on the gauge field to get E

and B. Can we try something like E,B ∼ ∂µAν? The answer is no because the number of components on
both sides don’t match up. E and B have a total of 6 components while ∂µAν has 4×4 = 16 components
(the indicesµ and ν can take 4 values each namely 0,1,2,4 , so the total number of index combination is
4× 4). Clearly we have to select only a 6 component subset of these 16 derivatives but at the same time
it has to be an “irrep” of Lorentz group. One possibility is to make a (0, 2) type tensor, Fµν defined by,

Fµν = ∂µAν − ∂νAµ.

The Fµν is called the (Maxwell) field strength tensor. This being manifestly antisymmetric in the two
indices has 4C2 = 6 components as well! Indeed one can check that,

F0i = ∂0Ai − ∂iA0 = −1

c

∂Ai

∂t
− ∂Φ

∂xi
= Ei.

Similarly, one can show,

F oi = ∂0Ai − ∂iA0 = ∂0A
i + ∂iA

0 =
1

c

∂Ai

∂t
+
∂Φ

∂xi
= −Ei.

Homework: Show how Fij is related to the magnetic field. Then write out Fµν with the question
marks replaced by stuff in terms of B.

0 −Ex −Ey −Ez
Ex 0 ? ?
Ey ? 0 ?
Ez ? ? 0

 .

Now the first Maxwell equation with sources can be expressed in a covariant way in terms of the field
strength, Fµν and current density 4-vector, jµ as

∂µFµν =
1

c
jν . (6)

The second Maxwell equation i.e. the one without sources/homogenous equations can be expressed as,

∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (7)

Since this equation has no source, we shall not call it an equation of motion. In fact, this equation is a
consistency condition for field strength, it is called a Bianchi identity.

If we define a dual field strength tensor,

Gµν =
1

2
εµνρσF

ρσ, (8)

then the homogeneous Maxwell’s equation can be expressed as,

∂µGµν = 0. (9)
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3.1 Action for Electrodynamics

The action again must be made out Lorentz invariant quantities, like for example, AµA
µ, FµνF

µν , FµνG
µν ,

GµνG
µν , jµAµetc. From this list we will need just two terms,

I[A] =

ˆ
d4x

(
−1

4
FµνF

µν +
4π

c
jµA

µ

)
. (10)

The curious factor of −1
4 is so that when we expand out the FµνF

µν term, we get a positive kinetic term

with the correct coefficient for the potential, to wit, 1
2Ȧ · Ȧ.

Homework: Check that this action gives you (6). Note that the Bianchi identity (7) cannot be
extracted from the action because it is NOT an equation of motion.

Homework: Check the term GµνG
µν is nothing new because it is proportional to FµνF

µν .

Homework: Check the term GµνF
µν is a total derivative i.e. of the form, ∂µ(Tµ... ν....).

Note: The term AµA
µ is not allowed because it breaks gauge invariance. Such a term would mean

photon has a mass. We know that the photon has zero mass.

Homework: Gauge Invariance of the Maxwell field

The Electric field and magentic field are invariant under a special redefinition of the potentials Φ, A,
namely,

Φ→ Φ′ = Φ + ∂tχ,

A→ A′ → A−∇χ,

for an arbitrary parameter χ. This can be expressed in a covariant form,

Aµ → A′µ = Aµ + ∂µχ. (11)

This is called a gauge transformation1. Show that under such a transformation Fµν remains unchanged
i.e. it is gauge invariant. (This means that the Maxwell term, −1

4FµνF
µν is gauge invariant as well).

Show that the term, jµA
µ is also invariant up to a total derivative for a conserved current jµ i.e. when

continuity ∂µj
µ = 0 holds. Show that a term like AµA

µ is not invariant under gauge transformations (11).

3.2 Charged point particle in an Electromagnetic field

Let consider a point particle of mass, m and electric charge, q (a point electric monopole) in a background
electro-magnetic field, Fµν . We know that in the non-relativistic/Newtonian limit, we should get an
equation of motion,

m
dv

dt
= q E + q

(v

c
×B

)
. (12)

1To be precise this is a U(1) gauge transformation.
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We also know from the free point particle case the lhs of the above equation can be made covariant (i.e.
a four vector/tensor) as follows,

m
dv

dt
→ m

duµ

dτ
.

The rhs is not that obvious since it has E,B which are part of a two index object, Fµν . So to make it
match up with the lhs in terms of indices, we need to contract Fµν with some (till now undetermined)
vector, say ωµ. If we look at the rhs of the noncovariant law, (12) we see the presence of a velocity and
we are lead to suspect that this vector could be uµ(τ), the four-velocity vector. Indeed that is the correct
guess. So now we can contract Fµν on the rhs with uν(τ) and we get the fully covariant version of the
Lorentz force law,

m
duν(τ)

dτ
=
q

c
Fµν(x(τ)) uν(τ). (13)

What about the action, Ipp? How does it change from the free case? The answer can again be arrived
at from a symmetry perspective. We can write down some terms which are Lorentz invariant and gauge
invariant,

IEMp ∝
q

c2

ˆ
dτ Fµν uµ uν .

But this vanishes, being a product of antisymmetric and symmetric tensors, so we might try,

IEMp ∝
q

c

ˆ
dτ uµ A

µ.

A more reparametrization invariant form is,

IEMp ∝
q

c

ˆ
dxµ A

µ(x),

∝ q

c

ˆ
dλ

dxµ
dλ

Aµ(x(λ))

Homework: Show that if you add a term

IEMp = −q
c

ˆ
dτ uµ(τ)Aµ(x(τ))

to the free point particle action, Ipp = −mc
´ √

dxµdxµ = −mc
´
dλ
√

dxµ

dλ
dxµ
dλ ) then the Euler-Lagrange

quation of motion obtained from varying the full action, Ipp + IEMp, is indeed the covariant Lorentz force

law (13). (Hint: Recall that uµ = c√
ẋν ẋν

ẋµ, where ẋµ =
dxµ
dλ and at the end set, λ = τ ).

4 Levi-Civita tensor

We introduced the Levi-Civita symbol2, εµνρσ, which is completely antisymmetric in it’s indices, i.e.
swapping any two indices turns it negative wrt to what it was. We will work with the convention,

ε0123 = +1.

2We are calling it a symbol since we have not proven yet that it is a tensor.
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Since it is completely antisymmetric by definition, it follows that in general,

εµνρσ = (−)P ε0123,

= (−)P .

where P and is the number of exchanges/swaps one needs to get to µνρσ from 01233.

Example: Consider the element ε2130. We need to do the following two swaps to arrive at this
element from ε0123

ε0123 → ε3120,

followed by,
ε3120 → ε2130.

Since we needed to do two swaps, P = 2, and we have,

ε2130 = (−)2 = +1.

Example: A cyclic change of all four indices, 0123→ 1230→ 2301→ 3012 requires odd number of
swaps. Lets look at the1230 case. We arrive at this from 0123 using the following steps,

0123 → 3120,

3120 → 2130,

2130 → 1230.

So it required 3 swaps i..e. P = 3, and hence,

ε1230 = (−)3 = −1.

Example: A cyclic change of three out of four indices requires even number of swaps. Consider the
case of 0123→ 0231. One needs the following two swaps to attain this

0123 → 0321

0321 → 0231.

Since, P = 2, we have,
ε0231 = +ε0123.

One can define a new symbol with all upstairs indices by raising all four indices of the Levi-Civita
symbol, viz.

εµνρσ = ηµαηνβηργησδεαβγδ.

3Usually P is defined as the number of swaps modulo 2, i.e. it can be either 0 (even) or 1 (odd), but it makes no difference
if we omit this modulo 2.
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This implies,

ε0123 = η0αη1βη2γη3δεαβγδ

= (detη)

= −1.

In general,
εµνρσ = −εµνρσ,

where the underline means this equation is not a tensor equation (since indices are mismatched on both
sides) but just an equation reflecting the equality of numerical value of components of the two tensors on
the two sides.

4.1 Levi-Civita Symbol under Lorentz transformation: Levi-Civita tensor

Let’s see what the Levi Civita symbol turns into after a Lorentz transformation,

ε′µνρσ = Λµ
αΛν

βΛρ
γΛσ

σ εαβγδ

= (det Λ) εµνρσ

For proper Lorentz transformations, det Λ = 1, so Levi-Civita remains the unchanged and it is an in-
variant tensor of type (0, 4)! However for improper Lorentz transformations, det Λ = −1 and Levi-Civita
does not transform as a (0, 4)-rank tensor.

4.2 Identities on contractions of Levi-Civita tensor

4.2.1 εµνρσε
µνρσ

There are in all 4! = 24 such terms and since εµνρσ = −εµνρσ, each term is equal to −1, so we have,

εµνρσε
µνρσ = −4!. (14)

4.2.2 εµνρσε
µνρτ

Now since the Levi-Civita is totally antisymmetric, for the contracted product to be non-vanishing, σ and
τ have to take the same value. For example, if µ = 0, ν = 1, ρ = 2, then σ and τ both have to be 3 as
there is no other choice. So we can write down,

εµνρσε
µνρτ ∝ δτσ.

Now we have to find out the proportionality constant, call it C

εµνρσε
µνρτ = C δτσ.

This is very easily determined by giving special values to the free indices σ, τ , say σ = τ = 3, then we
have,

C = εµνρ3ε
µνρ3.
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Now given that the fourth index is 3, the first three indices µ, ν, ρ can only take values 0, 1, 2. There are
in total 3! such terms (permutation of 0, 1, 2). Also recall that,

εµνρ3 = −εµνρ3.

So we have,
C = −3!,

and the identity,
εµνρσε

µνρτ = −3! δτσ. (15)

4.2.3 εµνρσε
µναβ

Again looking at the index structure this quantity is (2, 2) type tensor and again as before we note that the
antisymmetry of the Levi-Civita means that once we fix µ and µ then either ρ = α, σ = β or ρ = β, σ = α,
i.e.

εµνρσε
µναβ = D

(
δαρ δ

β
σ − δαρ δβσ

)
. (16)

The negative sign gets chosen because α and β are antisymmetric indices. Now we need to determine the
unknown constant, D and we proceed as we did in the previous case, i.e. by consider special values of the
free indices,

ρ = α = 2, σ = β = 3.

We get,

D = εµν23ε
µν23

= ε0123ε
0123 + ε1023ε

1023

= −2.

So we have,

εµνρσε
µναβ = −2!

(
δαρ δ

β
σ − δαρ δβσ

)
.

= −2! 2! δ[αρ δ
β]
σ .

Here we have introduced the “antisymmetrized sum” defined by,

[AB] =
1

2!
(AB −BA) ,

[ABC] =
1

3!
(ABC +BCA+ CAB −ACB −BAC − CBA) .

and so on.

Homework: Simplify the following product of two Levi-Civita’s with a single index contracted
εµνρσε

µαβγ .

All of these identities with contractions of course can be obtained from the mother of all identities,

εµνρσε
αβγδ = −4! δ[αµ δ

β
µδ

γ
ρδ

δ]
σ .
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