
Fall 2019: Classical Field Theory (PH6297)

Scalar Field Theory II: The free theory∗

August 22, 2019

1 Free scalar �eld theory: Klein-Gordon equation

The free scalar �eld is described by the Klein-Gordon equation, namely,(
�+m2

)
ϕ(x) = 0. (1)

This equation is obtained as the Euler-Lagrange equation from varying the action,

I [ϕ] =

ˆ
d4x

(
1

2
∂µϕ ∂

µϕ− m

2
ϕ2

)
.

Here we solve the Klein-Gordon equation. First note that if we set the parameter, m = 0, then the Klein-
Gordon equation reduces to the wave equation, �ϕ = 0, which naturally will admit (plane) wave solutions.
Anticipating a similar result for the Klein-Gordon equation we will �rst expand the �eld in a plane-wave
basis, aka a four dimensional Fourier transform,

ϕ(x) =

ˆ
d4x

(2π)
4 ϕ(k) e

−ik.x. (2)

Here, k.x = kµx
µ, and the four-dimensional wave-vector, k is de�ned by the components, kµ =

(
ω
c ,k

)
. Since

xµ = (ct,x), we have k.x = ωt− k · x. From now on we will use natural units and omit all factors of speed
of light, c. Since we are restricting ourselves to real scalar �elds,

ϕ∗(x) = ϕ(x),

which implies one needs to impose the condition,

ϕ(−k) = ϕ∗(k).

Substituting this plane-wave basis expansion of ϕ(x) in the Klein-Gordon equation, one gets,(
�+m2

)ˆ d4x

(2π)
4 ϕ(k) e

−ik.x = 0.

Since the only dependence on x is contained in the phase factor, one has,(
�+m2

) ˆ d4x

(2π)
4 ϕ(k) e

−ik.x =

ˆ
d4x

(2π)
4 ϕ(k)

(
�+m2

)
e−ik.x.

Next note that, ∂µ(e
−ik.x) = −ikµe−ik.x, i.e. a derivative acting on the phase-factor pulls down a factor of

−ik from the exponent, and one thus one has,
ˆ

d4x

(2π)
4 ϕ(k)

(
�+m2

)
e−ik.x =

ˆ
d4x

(2π)
4 ϕ(k)

(
−k2 +m2

)
e−ik.x.
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So the Klein-Gordon equation becomes,

ˆ
d4x

(2π)
4 ϕ(k)

(
k2 −m2

)
e−ik.x = 0.

Since the e−ik.x for di�erent k ∈ R4 constitute a basis, for this equation to be valid one must have all basis
coe�cients vanishing, i.e.,

ϕ(k)
(
k2 −m2

)
= 0.

Next recall k2 = ω2 − k2, where k2 = k · kand using it one can rewrite the above equation as,

ϕ(k)
(
ω2 − ω2

k

)
= 0, (3)

where we have de�ned ωk =
√
k2 +m2. This equation can be thought of as the momentum space (or Fourier

space) version of Klein-Gordon equation. The solution to this equation, which is now an algebraic equation
is very simple,

ϕ(k)

{
= 0, ω2 6= ω2

k

6= 0, ω2 = ω2
k.

A better way of rewriting this is by means of the Dirac delta function,

ϕ(k) = ϕ̃(k) δ(ω2 − ω2
k).

The delta function can be further simpli�ed using the identity,

δ (f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

where the xi's are the roots of the equation, f(x) = 0. This implies,

δ(ω2 − ω2
k) =

1

2ωk
δ(ω − ωk) +

1

2ωk
δ(ω + ωk),

and,

ϕ(k) = ϕ̃(k) δ(ω2 − ω2
k) =

1

2ωk
ϕ̃(k) (δ(ω − ωk) + δ(ω + ωk)) .

Plugging this back in the mode-expansion (2), one gets the general solution,

ϕ(x) =

ˆ
d4k

(2π)
4

1

2ωk
ϕ̃(k) (δ(ω − ωk) + δ(ω + ωk)) e

−ik.x.

Next recall that, d4k = dω d3k, and we can easily do the ω integral due to the delta function(s). Performing
the ω-integral for both terms gives us the form of the general solution to be,

ϕ(x) =

ˆ
d3k

(2π)
2

1

(2π) (2ωk)
ϕ̃(ωk,k) e

−i(ωkt−k·x) +

ˆ
d3k

(2π)
2

1

(2π) (2ωk)
ϕ̃(−ωk,k) e

i(ωkt+k·x).

Now we make a change of variable in the second term (integral), namely, k → −k. Since ωk is an even
function of k, it is una�ected. However, ϕ̃(−ωk,k)→ ϕ̃(−ωk,−k) and k ·x→ −k ·x. Making these changes
the general solution now looks like,

ϕ(x) =

ˆ
d3k

(2π)
2

1

(2π) (2ωk)

[
ϕ̃(ωk,k) e

−i(ωkt−k·x) + ϕ̃(−ωk,−k) ei(ωkt−k·x)
]
.

This is certainly real valued once we recall that,

ϕ̃(−ωk,−k) = ϕ̃∗(ωk,k).
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Thus, we can write the �nal form of the most general solution of the Klein-Gordon equation in a plane wave
basis to be,

ϕ(x) =

ˆ
d3k

(2π)
2

1

(2π) (2ωk)
ϕ̃(ωk,k) e

−i(ωkt−k·x) + cc (4)

where �cc� stands for complex conjugate. The coe�cients, ϕ̃(ωk,k) are completely arbitrary.

Thus the solutions to KG are indeed plane waves albeit with a dispersion relation,

ωk =
√
k2 +m2.

The phase velocity is,

ck =
ωk

|k|
=

√
1 +

m2

k2
.

Thus these are dispersive waves, even in vacuo - di�erent frequencies travel with di�erent phase velocities.
One might be alarmed by the fact that, ck > 1, i.e. phases travel faster than light and hence violate causality.
However one must recall that while phases can travel faster than the speed of light, the whole wave-packet
moves with the group velocity. We can compute the group velocity of the KG wave-packet,

vg =
dωk

d |k|
=

|k|√
k2 +m2

.

Thus vg < 1 and information (energy-momentum) does not travel faster than light and there is no violation
of causality!

2 The Yukawa meson �eld

Just as in the case of Maxwell's electrodynamics, one has propagating wave solutions in the absence of
sources (charges and currents), we found in the absence of any sources (homogeneous equations) the real
scalar �eld theory also admits wave solutions. Another important question in Maxwell theory is what is the
electric �eld produced a source e.g. a point charge of strength q located at the point, y. The answer takes
the form of the famous Coulomb law,

E(x) =
q

4πr2
r̂,

where r = x− y. One might ask the same question for the real scalar theory, namely what is the expression
for the �eld produced by a point source of strength g, located at position, y, namely, a source density function

ρ(x) = g δ3(x− y). (5)

How do we include this source term in the real scalar theory? We will do this following Maxwell theory by
inserting a potential term ρ(x) ϕ(x) in the action (or lagrangian),

I [ϕ] =

ˆ
d4x

(
1

2
∂µϕ ∂

µϕ− m

2
ϕ2 − ρ ϕ

)
,

with the speci�ed source density (5). The equation of motion in this case is,(
�+m2

)
ϕ(x) = −ρ(x).

Since the source (5) is time-independent (static), one can expect the �eld it creates to be also time indepen-
dent (static), i.e. ϕ(x) = ϕ(x), just a function of the spatial coordinates. In such a time-independent �eld,
time-derivatives vanish : ∂tϕ = 0, and the equation reduces to a purely spatial equation,(

∇2 −m2
)
ϕ(x) = g δ3(x− y). (6)
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This equation is reminiscent of the Coulomb Green's function equation in electrodynamics and we shall solve
this equation using the same method we did for the Coulomb Green's function i.e. by Fourier transforming
to momentum space,

ϕ(x) =

ˆ
d3k

(2π)
3 G(k) e

−ik·(x−y). (7)

Here G(k) are the Fourier components of the �eld ϕ (we use the letter G because it is a Green's function
i.e. for a delta function source). Plugging this in the LHS of equation (6) and on the RHS plugging the
integral/Fourier representation of the Dirac delta function

δ3(x− y) = ϕ(x) =

ˆ
d3k

(2π)
3 e
−ik·(x−y),

one gets, (
∇2 −m2

)ˆ d3k

(2π)
3 G(k) e

−ik·(x−y)) = g

ˆ
d3k

(2π)
3 e
−ik·(x−y),

or, ˆ
d3k

(2π)
3 G(k)

(
∇2 −m2

)
e−ik·(x−y) = g

ˆ
d3k

(2π)
3 e
−ik·(x−y).

Next recall, ∇e−ik·(x−y) = −ike−ik·(x−y) and one has ∇2 → (−ik) · (−ik) = −k2 and the above equation
becomes, ˆ

d3k

(2π)
3 G(k)

(
−k2 −m2

)
e−ik·(x−y) =

ˆ
d3k

(2π)
3 g e

−ik·(x−y).

As before the e−ik·(x−y)'s form a basis and the only way the above equation can hold i� for all k, the basis
coe�cients are equal on both sides, i.e.

G(k)
(
−k2 −m2

)
= g,

which immediately give the Fourier components of the �eld to be,

G(k) = − g

k2 +m2
. (8)

Plugging this back in the mode expansion (7), we get the expression for the �eld

ϕ(x) = −g
ˆ

d3k

(2π)
3

1

k2 +m2
e−ik·(x−y).

Next we have to perform the momentum integrals. It will be convenient if we switch from Cartesian co-
ordinates to spherical polar coordinates in momentum space, i.e.

(
k1, k2, k3

)
→ (q, θ, φ) where q =

√
|k|.

Further it will be even more convenient to choose, without any loss of generality the z-axis in the momentum
space to be along the vector, r = x− y. In these new coordinates the expression for the �eld is,

ϕ(x) = −g
ˆ
q2dq sin θdθ dφ

(2π)
3

1

q2 +m2
e−iqr cos θ.

Here r = |r|. The φ integral can be performed easily as nothing in the integrand depends on it. So we
replace

´
dφ = 2π, and get,

ϕ(x) = − g

4π2

ˆ ∞
0

dq
q2

q2 +m2

ˆ π

0

dθ sin θ e−iqr cos θ.

Next the θ-integral is performed, namely,

ˆ π

0

dθ sin θ e−iqr cos θ =

ˆ 1

−1
d(cos θ) e−iqr(cos θ) =

eiqr − e−iqr

iqr
.
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After this one has,

ϕ(x) = − g

4π2

ˆ ∞
0

dq
q2

q2 +m2

eiqr − e−iqr

iqr

=
g

4π2r

ˆ ∞
0

dq
iq

q2 +m2

(
eiqr − e−iqr

)
=

g

4π2r

(ˆ ∞
0

dq
iq

q2 +m2
eiqr −

ˆ ∞
0

dq
iq

q2 +m2
e−iqr

)
.

Now on the second integral we perform a change of variables, q → −q. Under this change of variables the
second integral becomes,

−
ˆ ∞
0

dq
iq

q2 +m2
e−iqr =

ˆ 0

−∞
dq

iq

q2 +m2
eiqr.

which is the same integral as the �rst term except the range is now (−∞, 0). Summing these two contribu-
tions, the �eld expression becomes a single integral ranging from (−∞,∞),

ϕ(x) =
g

4π2r

ˆ ∞
−∞

dq
iq

q2 +m2
eiqr.

Since d
dr (e

iqr) = iq eiqr, we can rewrite the above expression as,

ϕ(x) =
g

4π2r

d

dr

(ˆ ∞
−∞

dq
eiqr

q2 +m2

)
. (9)

To get to the �nal form of the �eld one has to perform the q-integral, namely,

J(r) =

ˆ ∞
−∞

dq
eiqr

q2 +m2
.

We note that the integrand has two poles on the imaginary q-axis, , while the integration contour is along
the real q-axis from −∞ to ∞. To evaluate the integral, J using the residue theorem one has to close the
contour, and in the process encircle either of the two poles, i.e. one can choose to close the contour from
above (in the upper half-complex q-plane) anticlockwise, or close the contour from below (in the lower half
complex q-plane) clockwise as shown in �gure (1). The choice of the contour is determined by the physical
boundary conditions, one must have

ϕ(x), J(r)→ 0, as r →∞. (10)

This physically means the �eld weakens and becomes zero as one moves away from the location of the
source to in�nitely far distance. This boundary condition selects the anticlockwise contour in the upper half
complex q-plane which encircles the pole, q = +im. Then using the residue theorem one has

J =

‰
dq

eiqr

q2 +m2
=

2πi ei(im)r

2(im)
=

π

m
e−mr.

Thus indeed we �nd J(r) → 0 as r → ∞ 1. Plugging this result back in (9), we get the �nal form of the
scalar �eld produced by a point source of strength g located at y,

ϕ(x) = −g e
−mr

4πr
, r = |x− y| . (11)

Although the factor 1
4πr is perhaps familiar from the Coulomb Green's function for electrodynamics for a

unit point charge (source), there are a couple massive di�erences. First is the factor e−mr, an exponential

1Had we selected the other contour, closing it from down in the lower half of complex q-plane, one would get J(r) ∝ emr

thus leading to J(r) → ∞ as r → ∞. This would have been unphysical as the �eld (e�ect of the source) grows larger as we
move farther from the source.
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Figure 1: Two possible contours for the Yukawa meson �eld (Green's function) in the complex q-plane

suppression of the �eld as one goes away from the source. This e�ectively means the e�ect of the sources
dissipates to negligible amount r > 1

m . Thus unlike electromagnetic force, the Klein-Gordon scalar �eld
represents a short-range interaction (force). Second, the overall negative sign implies that the force is
an attractive one. The best way to see this is to ask what is the potential energy when we introduce a test
source ρ(x) = ε δ3(x− x′) of very weal strength ε in the �eld (11). The interaction energy is,

U =

ˆ
d3x ρ(x)ϕ(x) = −gε e

−m|x′−y|

|x′ − y|
< 0.

Since the potential energy is negative, this implies an attractive interaction. Such a real scalar �eld was
proposed to be the force-�eld responsible for holding two protons or two neutrons together in the nucleus of
an atom by H. Yukawa in 1935. That real scalar �eld went by the name of Yukawa's meson (�eld). From
the range of the nuclear force, i.e. ∼ 10−15m, he was able to predict the mass parameter, m ∼ 102−3 times
the mass of the electron. On quantizing the Yukawa meson �eld thus one should expect the quanta of the
meson �eld, namely the meson particles to have appear in nature with the same mass. Indeed in 1947, such
meson particles were observed by Powell in cosmic rays.

However this real scalar is electrically neutral and cannot describe the interaction (force) between the
neutron and the proton. For that one needs a theory of (electrically) charged scalars and the correct theory
for that would necessarily involve a complex scalar �eld. We will take up the complex scalar �eld theory in
the next lecture.

Homework: Show that the choice of the boundary condition (10) in real space is equivalent
to the choice of the counterclockwise contour in the upper half complex q-plane i.e. momentum
space.
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