
Fall 2019: Classical Field Theory (PH6297)

U(1) Symmetry of the complex scalar and scalar electrodynamics

August 27, 2019

1 Global U(1) symmetry of the complex field theory & associated
Noether charge

Consider the complex scalar field theory, defined by the action,

I
[
Φ(x),Φ†(x)

]
=

ˆ
d4x

[
(∂µΦ)† ∂µΦ− V

(
Φ†Φ

)]
. (1)

As we have noted earlier complex scalar field theory action Eq. (1) is invariant under multiplication by
a constant complex phase factor ei α,

Φ→ Φ′ = e−i αΦ,

Φ† → Φ′† = ei αΦ†. (2)

The phase,α is necessarily a real number. Since a complex phase is unitary 1× 1 matrix i.e. the complex
conjugation is also the inverse, (

e−i α
)†

=
(
e−i α

)−1
,

such phases are also called U(1) factors (U stands for Unitary matrix and since a number is a 1×1 matrix,
U(1) is unitary matrix of size 1× 1). Since this symmetry transformation does not touch spacetime but
only changes the fields, such a symmetry is called an internal symmetry. Also note that since α is
a constant i.e. not a function of spacetime, it is a global symmetry (global = same everywhere =
independent of spacetime location).

Check: Under the U(1) symmetry Eq. (2), the combination Φ†Φ is obviously invariant,

Φ′†Φ
′

=
(
ei αΦ†

) (
e−i αΦ

)
= Φ†Φ.

This implies any function of the product Φ†Φ is also invariant.

V
(

Φ′†Φ
′
)

= V
(

Φ†Φ
)
.

Note that this is true whether α is a constant or a function of spacetime i.e. α(x).
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Next let’s look at the kinetic term,(
∂µΦ†

)
(∂µΦ)→

(
∂µΦ′†

) (
∂µΦ′

)
= ∂µ

(
ei αΦ†

)
∂µ
(
e−i αΦ

)
,

= ei α
(
∂µΦ†

)
e−i α (∂µΦ)

=
(
∂µΦ†

)
(∂µΦ) .

So this kinetic term in the action is also invariant because α is a constant and the derivative does not act
on it. If α was a function of spacetime, α = α(x), the derivative would have acted on it and the term
would not be invariant. Incidentally, a spacetime dependent phase α(x) is called a local U(1) transfor-
mation.

1.1 Conserved charges corresponding to the U(1) symmetry

Here we obtain the conserved charge for the global U(1) symmetry of the complex scalar field using the
Noether method. As a first step in the process, one expresses the U(1) symmetry transformation of the
field (and its complex conjugate) in infinitesimal form,

Φ→ Φ′ = e−i αΦ

= (1− iα+O(α2))Φ

≈ Φ− iαΦ,

while the complex conjugate field (to first order in α) changes to,

Φ′† ≈ Φ† + iαΦ†.

Next step in the process is to temporarily assume , α is a function of spacetime,

α = α(x).

But since α = α(x) is not a symmetry of the action, the action will change if we replace, Φ → Φ
′

=
Φ − iα(x) Φ, in the action (1) i.e. I

[
Φ′,Φ′†

]
6= I

[
Φ,Φ†

]
. The next step in the Noether method is to

compute the change in the action, δI = I
[
Φ′,Φ′†

]
− I

[
Φ,Φ†

]
. For that we first need to find the change

in the derivative of the field,

∂µΦ→ ∂µΦ′ = ∂µ (Φ− iα(x) Φ)

= ∂µΦ− i (∂µα) Φ− iα(x) ∂µΦ,

and the derivative of the complex conjugate,

∂µΦ† → ∂µΦ′† = ∂µ

(
Φ† + iα(x)Φ†

)
= ∂µΦ† + i (∂µα) Φ† + iα(x) ∂µΦ†.
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Using these expressions, the action for the transformed fields is,

I
[
Φ′,Φ′†

]
=

ˆ
d4x

[(
∂µΦ′

)†
∂µΦ′ − V (Φ′†Φ′)

]
=

ˆ
d4x

[(
∂µΦ† + i (∂µα) Φ† + iα(x) ∂µΦ†

)
(∂µΦ− i (∂µα) Φ− iα(x) ∂µΦ) −V (Φ†Φ)

]
=

ˆ
d4x

[
(∂µΦ)† ∂µΦ− V (Φ†Φ)− i∂µα

(
Φ∂µΦ† − Φ†∂µΦ

)]
= I

[
Φ,Φ†

]
−
ˆ
d4x ∂µα i

(
Φ∂µΦ† − Φ†∂µΦ

)
.

So the first order (in α) change in the action is,

δI = I
[
Φ′,Φ′†

]
− I

[
Φ,Φ†

]
= −

ˆ
d4x ∂µα(x) i

(
Φ∂µΦ† − Φ†∂µΦ

)
.

From this expression we can identify the conserved current corresponding to the global U(1) symmetry,

jµ = i
(

Φ∂µΦ† − Φ†∂µΦ
)
. (3)

One can easily check that is conserved on-shell (on-shell means the classical equation of motion holds).
For example, for the free theory, V (Φ†Φ) = m2Φ†Φ, and we have,

∂µj
µ = i

(
Φ†∂2Φ− Φ∂2Φ†

)
= i

(
−Φ†m2Φ + Φm2Φ†

)
= 0.

Here we have used the equation of motion for the free complex scalar field (the Klein-Gordon equation)(
∂2 +m2

)
Φ =

(
∂2 +m2

)
Φ† = 0. (4)

Finally, the conserved charge is then given by the volume integral,

Q =

ˆ
d3x j0 = i

ˆ
d3x

(
ΦΦ̇† − Φ†Φ̇

)
. (5)

Homework: Check that the current (3) is conserved i.e. obeys the continuity equation
∂µj

µ = 0 not just for the free case i.e. when V = m2Φ†Φ but for a potential which is a more
general function of Φ†Φ, i.e. V (Φ†Φ). (Hint: Use the Euler-Lagrange equation of motion).

1.1.1 The charge conjugation symmetry of the complex scalar field theory

Note that in addition to the continuous global U(1) symmetry (2), there is another discrete internal
symmetry of the complex field theory, namely, interchanging the field Φ with its complex conjugate, Φ†,

Φ↔ Φ†.

Under this symmetry of course the charge (polarity) of the scalar field also changes,

Q→ −Q.

This is why this discrete symmetry is dubbed as charge conjugation symmetry . In the quantum
theory, this discrete internal symmetry will transform particles to antiparticles and vice-versa.
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2 Coupling complex scalar to the Maxwell field: Scalar Electrodynam-
ics

Here we try to couple the complex scalar field to the Maxwell field with the anticipation that the global
U(1) charge of the scalar is in fact the electric charge. For simplicity we will work with the free scalar i.e.
take the complex scalar lagrangian to be,

LΦ =
(
∂µΦ†

)
(∂µΦ)−m2Φ†Φ, (6)

which leads to the equations of motion (4). The U(1) symmetry of this lagrangian is,

Φ→ Φ′ = e−igαΦ,

where we have introduced g as a quantum of charge (even before quantizing the theory) and α is the U(1)
parameter. This leads to the Noether current, g jµ(0), where

jµ(0) = i
(

Φ∂µΦ† − Φ†∂µΦ
)
. (7)

The significance of the subscript 0 in the expression for current will become clear in what follows (as the
leading term in a perturbation expansion in powers of the “coupling constant”, g, with which the scalar
matter couples to the Maxwell field).

The free Maxwell field on the other hand is described by the lagrangian,

LA = −1

4
FµνF

µν . (8)

This has a gauge symmetry, namely,

Aµ(x)→ A′µ(x) = Aµ(x)− ∂µλ(x). (9)

Thus the full lagrangian describing the dynamics of scalar fields interacting with the Maxwell field (scalar
electrodynamics) must contain these two terms at least, plus an interaction term, call it L′

LSED = L(0) + L′, L(0) = LΦ + LA (10)

Since we want to identify the Noether current for global U(1) symmetry of the scalar field with the electric
current that couples to Maxwell field, we are lead to write down an interaction term,

L′ = −gjµ(0)Aµ.

Here g is a dimensionless coupling constant which governs how strongly the scalar field interacts with the
Maxwell gauge field. Thus the full interacting lagrangian for scalar electrodynamics could be,

LSED = LΦ + LA + L′.

Now let’s look at the equations of motion of this system. The equation of motion for the Maxwell field is
given by,

∂µ

(
∂L

∂ (∂µAν)

)
=

∂L
∂Aν

=⇒ ∂µ

(
∂LA

∂ (∂µAν)

)
=

∂L′

∂Aν

=⇒ ∂µF
µν = gjν(0). (11)
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Taking the partial derivative ∂ν of both sides of the above equation,

∂µ∂νF
µν = g∂µj

µ
(0).

The LHS vanishes on account of symmetry (the derivatives ∂µ∂ν are symmetric under exchange µ ↔ ν,
while the field strength Fµν is antisymmetric under the same exchange µ ↔ ν), and so must the RHS,
i.e. one must have ∂µj

µ
(0) = 0. Thus the Maxwell equation (11) is consistent only when the current on the

RHS is a conserved one.
The scalar equation of motion now is given by,

∂µ

[
∂L

∂ (∂µΦ†)

]
=

∂L
∂Φ†

,

or, since

∂µ

[
∂LΦ

∂ (∂µΦ†)

]
+ ∂µ

[
∂L′

∂ (∂µΦ†)

]
= −∂(m2Φ†Φ)

∂Φ†
+
∂L′

∂Φ†

which gives,
�Φ− ig∂µ (ΦAµ) = −m2Φ + ig (∂µΦ)Aµ

or, (
� +m2

)
Φ = 2ig Aµ ∂µΦ + ig Φ ∂µA

µ (12)

Similarly for the complex conjugate field Φ†,(
� +m2

)
Φ† = −2igAµ∂

µΦ† − igΦ†∂µAµ

So the scalar equation of motion has changed! Now recall that the conservation of the U(1) current jµ(0)

defined in (7) depended on the equation of motion of the scalar field be the Klein-Gordon equation and
not the new equation (12). To check if the current is conserved with the new scalar equation (12), we
take a 4-divergence of the current (7),

∂µj
µ
(0) = ig

(
Φ�Φ† − Φ†�Φ

)
= 2g2∂µ

(
AµΦ†Φ

)
6= 0.

So the current jµ(0) is not conserved, and hence the Maxwell equation (11) is inconsistent with the scalar

equation (12). To make things consistent one needs to put on the RHS of the Maxwell equation (11) a
strictly conserved current.

The reason for failure of conservation of the current, j(0) is simply because it is not the Noether current
of the full interacting Lagrangian (10), instead just of the pure scalar part, LΦ. Thus the equations of
motion which follow from the trial lagrangian, (10), (in particular the interaction term, L′) are inconsis-
tent, especially the Maxwell equation (11) must contain on the RHS the full Noether current. To get to
the correct interaction lagrangian we will follow the Noether procedure in which we temporarily turn the
global U(1) parameter, α in a local one i.e. an arbitrary function of spacetime, α(x). In the lowest order
(in powers of g), the transformation of the complex scalar is then,

δΦ(x) = Φ′(x)− Φ(x) = −i g α(x)Φ(x)
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Our starting point is the lagrangian,

LSED = LΦ + LA + L′

where the consistent interaction term, L′ is now yet to be determined. Through the Noether procedure
we will determineL′ as a power series (i.e. perturbatively) in g, namely,

L′ =
∞∑
n=0

gn L′(n).

The steps of the procedure are as follows:

1. Identify the gauge transformation parameter of the gauge field, λ with the Noether symmetry
parameter, α for the matter field.

λ = C α

where C is an undetermined constant. So now we are considering the joint/simultaneous transfor-
mation,

δΦ = e−i g α(x)Φ(x),

δAµ = −C ∂µα(x). (13)

2. Find out the variation in the non-interacting Lagrangian under the joint transformation (13),

δL(0) = δLΦ + δLA = δLΦ = −g∂µα jµ(0).

3. Now add a term to the non-interaction lagrangian L(0) which is order 1 in g i.e. linear in g such
that the variation of it should cancel the variation of the zeroth order i.e.

g δL(1) = −δL(0)

= g ∂µα j
µ
(0)

= − g
C
δAµ j

µ
(0).

If we omit terms which are O(g2), then,

δ
(
− g
C
Aµ j

µ
(0)

)
= gδL(1) +O(g2)

because,

δjµ(0) = −2g
(

Φ†Φ
)
∂µα ∼ O(g).

So we can declare,

L(1) = − 1

C
Aµj

µ
(0).

Thus to linear order in g, the interacting Lagrangian is,

L = L(0) + gL(1)

Now if we choose C = 1, then this interaction term gives the correct potential energy in the
electrostatics limit. So we will choose C = 1 from now on.
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4. Now the full lagrangian, L(0) + L(1) is invariant under (13) to order g but not to order g2. So we
will add a second order in g term in the Lagrangian, say g2L(2), which would cancel the order g
variation of L1. We have,

δL(1) = δ
(
−Aµjµ(0)

)
= −δAµjµ(0) −Aµδj

µ
(0)

= ∂µα j
µ
(0)︸ ︷︷ ︸

O(g0)

+ g
(

2Aµ∂
µα Φ†Φ

)
︸ ︷︷ ︸

O(g1)

Thus we set,

δL(2) = −2Aµ∂
µα Φ†Φ

= δ (AµA
µ) Φ†Φ

= δ
(
AµA

µΦ†Φ
)

since δ
(
Φ†Φ

)
= 0 under (13). Thus we identify,

L(2) = AµA
µΦ†Φ.

The lagrangian up to second order in g is thus,

LSED = L(0) + gL(1) + g2L(2)

5. Since δL(2) does not have any term which is linear in g,

δL(2) = 2 (δAµ)AµΦ†Φ +AµA
µδ(Φ†Φ)

= O(g0).

So one does not need any higher order (in g) correction term! Thus the series of interaction terms
ends at the second order, i.e. g2. Thus the full Lagrangian is,

LSED = L(0) + gL(1) + g2L(2)

=
(
∂µΦ†

)
(∂µΦ)−m2Φ†Φ− 1

4
FµνF

µν − g Aµjµ(0) + g2AµA
µΦ†Φ. (14)

Homework: Check that the lagrangian (14) leads to consistent equations for the scalar and
Maxwell fields.

The moral of the story is that in order to consistently couple the complex scalar field (which has a global
U(1) symmetry) to the Maxwell gauge field, Aµ it is necessary to promote the global U(1) symmetry to
a local U(1) symmetry by identifying the U(1) symmetry parameter of the scalar field with the gauge
symmetry parameter of the Maxwell field. This will turn out to be a general paradigm for all interac-
tions, the only way to couple matter to massless fields (such as the Maxwell field or gluon field or the
gravitational field) is via some gauge symmetry.
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2.1 Principle of minimal coupling

If we look hard at the lagrangian (14), specifically the kinetic term scalar field and the interaction terms,
it becomes clear that one can reorganize them in a nice way as follows(

∂µΦ†
)

(∂µΦ)− ig Aµ
(

Φ∂µΦ† − Φ†∂µΦ
)

+ g2AµA
µΦ†Φ = (DµΦ)† (DµΦ)

where,
DµΦ ≡ (∂µ − i g Aµ) Φ

Thus it appears if we replace the partial derivative, ∂µ by a “covariant derivative” (or more precisely a
gauge covariant derivative), Dµ = ∂µ−ig Aµ in the non-interacting lagrangian, L(0), then we automatically
arrive at the consistently interacting lagrangian, LSED, (14),

LSED = (DµΦ)† (DµΦ)−m2Φ†Φ− 1

4
FµνF

µν .

This very simple and general recipe to construct consistently interacting theories of gauge fields (massless
integer-spin fields) and matter, where we just replace the partial derivatives by a covariant derivative is
called the principle of minimal substitution or minimal coupling .
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