
Outline Query Equivalence Query Tuning

Fundamentals of Database Systems
[Query Optimization – II]

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
Indian Statistical Institute, Kolkata

September, 2019



Outline Query Equivalence Query Tuning

1 Query Equivalence

2 Query Tuning
Motivation
Logical and Physical Plan
Optimizing Search Strategies



Outline Query Equivalence Query Tuning

What is query equivalence?

Two relational algebra expressions are said to be equivalent if on
every legal database instance (i.e., a relation) the two expressions
generate the same relation (i.e., the same set of tuples).

Query equivalence relations are used for tuning a query into an
optimized form.



Outline Query Equivalence Query Tuning

Query equivalence – On projection and selection

Cascade property of projection: πX1(πX2(. . . (πXn(R)) . . .)) ≡
πX1(R).

Cascade property of selection: σθ1∧θ2(R) ≡ σθ1(σθ2(R)).

Commutative property of selection: σθ1(σθ2(R)) ≡
σθ2(σθ1(R)).

Selection can be combined with Cartesian product and theta
join in the following way:

1 σθ(R1 × R2) ≡ R1 ./θ R2 (this is simply the definition of theta
join).

2 σθ1(R1 ./θ2 R2) ≡ R1 ./θ1∧θ2 R2.



Outline Query Equivalence Query Tuning

Query equivalence – On theta-join

Commutative property of theta-join: R1 ./θ R2 ≡ R2 ./θ R1.

Theta joins are associative in the following way:
(R1 ./θ1 R2) ./θ2∧θ3 R3 ≡ R1 ./θ1∧θ3 (R2 ./θ2 R3), where θ2
involves attributes only from R2 and R3. Any of these
conditions may be empty, and hence it follows that the
Cartesian product operation is also associative.

The selection operation distributes over the theta-join
operation under the following two conditions:

1 It distributes when all the attributes in selection condition θ0
involve only the attributes of one of the relations (say R1)
being joined. i.e. σθ0(R1 ./θ R2) ≡ (σθ0(R1) ./θ R2).

2 It distributes when selection condition θ1 involves only the
attributes of R1 and θ2 involves only the attributes of R2. i.e.
σθ1∧θ2(R1 ./θ R2) ≡ (σθ1(R1) ./θ σθ2(R2)).



Outline Query Equivalence Query Tuning

Query equivalence – On theta-join

The projection operation distributes over the theta-join
operation under the following two conditions:

1 Let L1 and L2 be the attributes of R1 and R2, respectively, and
the join condition θ involves the attributes only in L1 ∪ L2.
Then we have

πL1∪L2(R1 ./θ R2) ≡ (πL1(R1)) ./θ (πL2(R2)).

2 Consider a join operation R1 ./θ R2 and suppose L1 and L2 be
the sets of attributes from R1 and R2, respectively. Further
assume that L3 and L4 denote the attributes of R1 and R2,
respectively, that are involved in join condition θ, but are not
in L1 ∪ L2. Then we have

πL1∪L2(R1 ./θ R2) ≡ πL1∪L2((πL1∪L3(R1)) ./θ (πL2∪L4(R2))).



Outline Query Equivalence Query Tuning

Query equivalence – On natural join

Commutative property of natural join: R1 ./ R2 ≡ R2 ./ R1.

Associative property of natural join: (R1 ./ R2) ./ R3 ≡
R1 ./ (R2 ./ R3).

Note: The commutativity and associativity of join operations are
important for join reordering in query optimization.



Outline Query Equivalence Query Tuning

Query equivalence – On set operations

Commutative property of set union: R1 ∪ R2 ≡ R2 ∪ R1.

Associative property of set union: (R1 ∪ R2) ∪ R3 ≡
R1 ∪ (R2 ∪ R3).

Commutative property of set intersection: R1 ∩ R2 ≡ R2 ∩ R1.

Associative property of set intersection: (R1 ∩ R2) ∩ R3 ≡
R1 ∩ (R2 ∩ R3).

The selection operation distributes over the union,
intersection and set difference operations: σθ(R1 − R2) ≡
σθ(R1)− σθ(R2) (replacing ‘−’ with either ∪ or ∩ also holds).

Again we have the equivalence relation: σθ(R1 − R2) ≡
σθ(R1)− R2 (replacing ‘−’ with ∩ also holds, but not for ∪).

Distributive property of projection over union: πX (R1 ∪ R2) ≡
(πX (R1)) ∪ (πX (R2)).



Outline Query Equivalence Query Tuning

Motivation behind query tuning

For a given query, find a correct execution plan that has the lowest
cost (e.g., time, size, etc.).

Note that, no optimizer can truly produce the optimal plan, hence
do the following:

Use estimation techniques to guess real plan cost.

Use heuristics to limit the search space.

Note: Query tuning is a part of the DBMS and it is proven to be
NP-Complete.



Outline Query Equivalence Query Tuning

The costs to be optimized

For a given query, an estimatation of the cost of executing a plan
for the current state of the database is carried out. These include
the following:

Interactions with other work in DBMS

Size of intermediate results

Choices of algorithms, access methods

Resource utilization (CPU, I/O, network)

Data properties (skew, order, placement)



Outline Query Equivalence Query Tuning

Nested query processing

Query optimizers often use nested loops while joining tables
containing small number of rows with an efficient driving condition.
It is important to have an index on column of inner join table as
this table is probed every time for a new value from outer table.

However, nested queries are quite complited to process.

Note: We cannot always un-nest sub-queries (its tricky!!!).



Outline Query Equivalence Query Tuning

Logical and physical plan

The optimizer generates a mapping of a logical algebra expression
to the optimal equivalent physical algebra expression.

Physical operators define a specific execution strategy using a
particular access path.
– They can depend on the physical format of the data that they
process (i.e., sorting, compression).
– Not always a 1:1 mapping from logical to physical.



Outline Query Equivalence Query Tuning

Physical plans – Hash join

Hash joins are used while joining large tables. The optimizer uses
smaller of the two tables to build a hash table in memory and then
scans the larger table and compares its hash values (of tuples from
larger table) with the hash table to find the joined rows.

The algorithm of hash join is divided in two parts as follows:

1 Build an in-memory hash table on smaller of the two tables.

2 Probe this hash table with hash value for each row in the
other table



Outline Query Equivalence Query Tuning

Physical plans – Hash join



Outline Query Equivalence Query Tuning

Physical plans – Sort Merge join

Sort merge join is used to join two independent data sources. They
perform better than the nested loop when the volume of data is
big in tables.

They perform better than hash join when the join condition is
either an inequality condition or if sorting is anyways required due
to some other attribute (other than join) like order by.

The full operation is done in two parts as follows:

1 Sort join operation

2 Merge join operation

Note: If the data is already sorted, first step is avoided.



Outline Query Equivalence Query Tuning

Physical plans – Sort Merge join



Outline Query Equivalence Query Tuning

Optimizing search strategies

There are several ways to optimize the searching mechanism as
listed below:

Heuristics

Heuristics + Cost-based join order search

Randomized algorithms

Stratified search

Unified search



Outline Query Equivalence Query Tuning

Optimization based on heuristics

Define static rules that transform logical operators to a physical
plan. Some of these as follows:

Perform most restrictive selection early

Perform all selections before joins

Predicate/Limit/Projection pushdowns

Join ordering based on cardinality

Note: Original versions of INGRES and Oracle (until mid 1990s)
used this.



Outline Query Equivalence Query Tuning

Optimization based on heuristics – An example

Consider the following three relations ACTOR, MOVIE and ACTS with
primary keys {AID}, {MID} and {AID, MID}, respectively.

ACTOR MOVIE ACTS

AID Name
1 Amitabh Bachchan
2 Taapsee Pannu
3 Aksay Kumar
4 Prabhas
5 Shraddha Kapoor
6 Kangana Ranaut

MID Name
1 Badla
2 Kesari
3 Saaho
4 Mental Hai Kya

AID MID
1 1
2 1
3 2
5 3
4 3
6 4



Outline Query Equivalence Query Tuning

Optimization based on heuristics – An example

Suppose we want to retrieve the names of actors who acted in the
movie Saaho.

The following query serves the purpose:
select ACTOR.Name from ACTOR, ACTS, MOVIE where
ACTOR.AID = ACTS.AID and ACTS.MID = MOVIE.MID and
MOVIE.Name = “Saaho”;

Let us see how a heuristics based optimizer works!!!



Outline Query Equivalence Query Tuning

Optimization based on heuristics – An example

Step 1: Decompose a complex query into single-variable queries

Q

select ACTOR.Name from ACTOR, ACTS, MOVIE where
ACTOR.AID = ACTS.AID and ACTS.MID = MOVIE.MID and
MOVIE.Name = “Saaho”;

Q1

select MOVIE.MID into
TEMP1 from MOVIE where
MOVIE.Name = “Saaho”;

Q2

select ACTOR.Name from
ACTOR, ACTS, TEMP1
where ACTOR.AID =
ACTS.AID and ACTS.MID =
TEMP1.MID;



Outline Query Equivalence Query Tuning

Optimization based on heuristics – An example

Step 1: Decompose a complex query into single-variable queries
(Continued ...)

Q2

select ACTOR.Name from ACTOR, ACTS, TEMP1 where
ACTOR.AID = ACTS.AID and ACTS.MID = TEMP1.MID;

Q3

select ACTS.AID into TEMP2
from ACTS, TEMP1 where
ACTS.MID = TEMP1.MID;

Q4

select ACTOR.Name from
ACTOR, TEMP2 where
ACTOR.AID = TEMP2.AID;



Outline Query Equivalence Query Tuning

Optimization based on heuristics – An example

Step 2: Substitute the values in the order Q1 → Q3 → Q4

Q1

select MOVIE.MID into TEMP1 from MOVIE where MOVIE.Name
= “Saaho”;

MID
3



Outline Query Equivalence Query Tuning

Optimization based on heuristics – An example

Step 2: Substitute the values in the order Q1 → Q3 → Q4
(Continued ...)

Q3

select ACTS.AID into TEMP2 from ACTS, TEMP1 where
ACTS.MID = 3;

AID
5
4



Outline Query Equivalence Query Tuning

Optimization based on heuristics – An example

Step 2: Substitute the values in the order Q1 → Q3 → Q4
(Continued ...)

Q4

select ACTOR.Name from ACTOR, TEMP2 where ACTOR.AID =
TEMP2.AID;

Name
Shraddha Kapoor

Prabhas



Outline Query Equivalence Query Tuning

Optimization based on heuristics – Pros and cons

Advantages:

1 Easy to implement and debug.

2 Works reasonably well and is fast for simple queries.

Disadvantages:

1 Relies on magic constants that predict the efficacy of a
planning decision.

2 Nearly impossible to generate good plans when operators have
complex inter-dependencies.



Outline Query Equivalence Query Tuning

Optimization based on heuristics + cost-based join order
search

Use static rules to perform initial optimization. Then use dynamic
programming to determine the best join order for tables.

First cost-based query optimizer

Bottom-up planning (forward chaining) using a
divide-and-conquer search method

Note: System R, early IBM DB2, most open-source DBMSs used
this.



Outline Query Equivalence Query Tuning

System R style optimization

1 Break query up into blocks and generate the logical operators
for each block.

2 For each logical operator, generate a set of physical operators
that implement it.
– All combinations of join algorithms and access paths

3 Then iteratively construct a left-deep tree that minimizes the
estimated amount of work to execute the plan.



Outline Query Equivalence Query Tuning

System R style optimization – An example

Suppose we want to retrieve the names of actors who acted in the
movie Saaho ordered by their actor ID.

The following query serves the purpose:
select ACTOR.Name from ACTOR, ACTS, MOVIE where
ACTOR.AID = ACTS.AID and ACTS.MID = MOVIE.MID and
MOVIE.Name = “Saaho” order by ACTOR.AID;

Let us see how the System R optimizer works!!!



Outline Query Equivalence Query Tuning

System R style optimization – An example

Step 1: Choose the best access paths to each table

ACTOR: Sequential Scan

ACTS: Sequential Scan

MOVIE: Index Look-up on Name



Outline Query Equivalence Query Tuning

System R style optimization – An example

Step 2: Enumerate all possible join orderings for tables

ACTOR ./ ACTS ./ MOVIE

ACTOR ./ MOVIE ./ ACTS

ACTS ./ ACTOR ./ MOVIE

ACTS ./ MOVIE ./ ACTOR

MOVIE ./ ACTOR ./ ACTS

MOVIE ./ ACTS ./ ACTOR



Outline Query Equivalence Query Tuning

System R style optimization – An example

Step 3: Determine the join ordering with the lowest cost



Outline Query Equivalence Query Tuning

Optimization based on heuristics + cost-based join order
search – Pros and cons

Advantages:

1 Usually finds a reasonable plan without having to perform an
exhaustive search.

Disadvantages:

1 All the same problems as the heuristic-only approach.

2 Left-deep join trees are not always optimal.

3 Have to take in consideration the physical properties of data
in the cost model (e.g., sort order).



Outline Query Equivalence Query Tuning

Optimization based on randomized algorithms

Perform a random walk over a solution space of all possible (valid)
plans for a query.

Continue searching until a cost threshold is reached or the
optimizer runs for a particular length of time.

Note: Postgres genetic algorithm used this.



Outline Query Equivalence Query Tuning

Optimization based on randomized algorithms – Pros and
cons

Advantages:

1 Jumping around the search space randomly allows the
optimizer to get out of local minimums.

2 Low memory overhead (if no history is kept).

Disadvantages:

1 Difficult to determine why the DBMS may have chosen a
particular plan.

2 Have to do extra work to ensure that query plans are
deterministic.

3 Still have to implement correctness rules.



Outline Query Equivalence Query Tuning

Optimization based on stratified search

First rewrite the logical query plan using transformation rules.
– The engine checks whether the transformation is allowed before
it can be applied.
– Cost is never considered in this step.

Finally, perform a cost-based search to map the logical plan to a
physical plan.



Outline Query Equivalence Query Tuning

Optimization based on unified search

Unify the notion of both logical → logical and logical → physical
transformations.
– No need for separate stages because everything is
transformations.

This approach generates a lot more transformations so it makes
heavy use of memorization to reduce redundant work.


	Query Equivalence
	Query Tuning
	Motivation
	Logical and Physical Plan
	Optimizing Search Strategies


