Fundamentals of Database Systems [Normalization – II]

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit Indian Statistical Institute, Kolkata October, 2019

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

[First Normal Form](#page-2-0)

[Second Normal Form](#page-7-0)

[Third Normal Form](#page-11-0)

[Boyce-Codd Normal Form](#page-28-0)

First normal form

The domain (or value set) of an attribute defines the set of values it might contain.

A domain is atomic if elements of the domain are considered to be indivisible units.

Only Company has atomic domain None of the attributes have atomic domains

KORKA SERKER DE VOOR

First normal form

Definition (First normal form (1NF))

A relational schema R is in 1NF iff the domains of all attributes in R are atomic.

The advantages of 1NF are as follows:

- \blacksquare It eliminates redundancy
- \blacksquare It eliminates repeating groups.

Note: In practice, 1NF includes a few more practical constraints like each attribute must be unique, no tuples are duplicated, and no columns are duplicated.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

First normal form

The following relation is not in 1NF because the attribute Model is not atomic.

We can convert this relation into 1NF in two ways!!!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

First normal form

Approach 1: Break the tuples containing non-atomic values into multiple tuples.

First normal form

Approach 2: Decompose the relation into multiple relations.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Partial dependency

- The partial dependency $X \rightarrow Y$ holds in schema R if there is a $Z \subset X$ such that $Z \to Y$.
- We say Y is partially dependent on X if and only if there is a proper subset of X that satisfies the dependency.
- **Note:** The dependency $A \rightarrow B$ implies if the A values are same, then the B values are also same.

Second normal form

Definition (Second normal form (2NF))

A relational schema R is in 2NF if each attribute A in R satisfies one of the following criteria:

- \blacksquare A is part of a candidate key.
- 2 A is not partially dependent on a candidate key.

In other words, no non-prime attribute (not a part of any candidate key) is dependent on a proper subset of any candidate key.

Note: A candidate key is a superkey for which no proper subset is a superkey, i.e. a minimal superkey.

Second normal form

The following relation is in 1NF but not in 2NF because Country is a non-prime attribute that partially depends on Company, which is a proper subset of the candidate key $\{Company, Make, Model,$ Distributor}.

We can convert this relation into 2NFIII

Second normal form

Approach: Decompose the relation into multiple relations.

Note: Each attribute in the left relation is a part of the candidate key {Company, Country} and in the right relation is a part of the candidate key {Company, Make, Model, Distributor}.

Functional dependency

The notion of functional dependency generalizes the notion of superkey. Consider a relation schema R, and let $X \subseteq R$ and $Y \subseteq R$. The functional dependency $X \to Y$ holds on schema R if

 $t1[X] = t2[X],$

in any legal relation $r(R)$, for all pairs of tuples t1 and t2 in r, then

 $t1[Y] = t2[Y]$.

Functional dependency

Armstrong's axioms:

- **Reflexivity property**: If X is a set of attributes and $Y \subseteq X$, then $X \rightarrow Y$ holds. (known as trivial functional dependency)
- **Augmentation property**: If $X \rightarrow Y$ holds and γ is a set of attributes, then $\gamma X \rightarrow \gamma Y$ holds.
- **Transitivity property**: If both $X \rightarrow Y$ and $Y \rightarrow Z$ holds, then $X \rightarrow Z$ holds.

KORKAR KERKER DRAM

Functional dependency

Armstrong's axioms:

- **Reflexivity property**: If X is a set of attributes and $Y \subseteq X$, then $X \rightarrow Y$ holds. (known as trivial functional dependency)
- **Augmentation property**: If $X \rightarrow Y$ holds and γ is a set of attributes, then $\gamma X \rightarrow \gamma Y$ holds.
- **Transitivity property**: If both $X \rightarrow Y$ and $Y \rightarrow Z$ holds, then $X \rightarrow Z$ holds.

Other properties:

- **u** Union property: If $X \rightarrow Y$ holds and $X \rightarrow Z$ holds, then $X \rightarrow YZ$ holds.
- **Decomposition property**: If $X \rightarrow YZ$ holds, then both $X \rightarrow Y$ and $X \rightarrow Z$ holds.
- **Pseudotransitivity property**: If $X \rightarrow Y$ and $\gamma Y \rightarrow Z$ holds, then $X\gamma \rightarrow Z$ holds.

KORKAR KERKER EL POLO

Closure of functional dependencies (FDs)

We can find \mathcal{F}^+ , the closure of a set of FDs $\mathcal{F},$ as follows:

```
Initialize F^+ with F
```
repeat

for each functional dependency $f = X \rightarrow Y \in F^+$ do Apply reflexivity and augmentation properties on f and include the resulting functional dependencies in \mathcal{F}^+ end for

for each pair of functional dependencies $f_1, f_2 \in F^+$ **do**

if f_1 and f_2 can be combined together using the transitivity property then

Include the resulting functional dependency in F^+

end if

end for

until F^+ does not further change

Closure of functional dependencies (FDs) – An example

Consider a relation $R = \langle$ UVWXYZ $>$ and the set of FDs $= \{U \rightarrow$ V, $U \rightarrow W$, $WX \rightarrow Y$, $WX \rightarrow Z$, $V \rightarrow Y$. Let us compute some non-trivial FDs that can be obtained from this.

By applying the augmentation property, we obtain

- \blacksquare UX \rightarrow WX (from U \rightarrow W)
- 2 WX \rightarrow WXZ (from WX \rightarrow Z)
- 3 WXZ \rightarrow YZ (from WX \rightarrow Y)

 \blacksquare By applying the transitivity property, we obtain

1
$$
U \rightarrow Y
$$
 (from $U \rightarrow V$ and $V \rightarrow Y$)

- 2 UX \rightarrow Z (from UX \rightarrow WX and WX \rightarrow Z)
- **3** WX \rightarrow YZ (from WX \rightarrow WXZ and WXZ \rightarrow YZ)

Closure of attribute sets

We can find A^+ , the closure of a set of attributes A , as follows:

```
Initialize A^+ with Arepeat
   for each functional dependency f = X \rightarrow Y \in F^+ do
     if X \subseteq A^+ then
        A^+ \leftarrow A^+ \cup Yend if
  end for
until A^+ does not further change
```
Note: The closure is defined as the set of attributes that are functionally determined by A under a set of FDs F.

Closure of attribute sets

The usefulness of finding attribute closure is as follows:

- \blacksquare Testing for superkey
	- Compute A^{+} and check if $R\subseteq\mathsf{A}^{+}$
- Testing functional dependencies
	- $-$ To check if an FD X \rightarrow Y holds, just check if Y \subseteq X $^+$
	- Same for checking if X \rightarrow Y is in F^+ for a given F
- \blacksquare Computing closure of F
	- $-$ For each $A\subseteq\mathcal{A}(R)$, we find the closure A^+ , and for each
	- $\mathcal{S} \subseteq A^+$, we output a functional dependency $A \to \mathcal{S}$

Closure of attribute sets – An example

Consider a relation $R = \langle$ UVWXYZ $>$ and the set of FDs $= \{U \rightarrow$ $V, U \rightarrow W, WX \rightarrow Y, WX \rightarrow Z, V \rightarrow Y$. Let us compute $UX^+,$ i.e., the closure of UX.

- **n** Initially $UX^+ = UX$
- Then we have $UX^+ = UVX$ (as $U \rightarrow V$ and $U \subseteq UX$)
- Then we have $UX^+ = UVWX$ (as $U \rightarrow W$ and $U \subseteq UVX$)
- Then we have $UX^+ = UVWXY$ (as $WX \rightarrow Y$ and $WX \subseteq Y$ UVWX)
- **Finally, we have UX⁺ = UVWXYZ (as WX** \rightarrow **Z and WX** \subset UVWXY)

Note: The closure of UX covers all the attributes in R.

Decomposition of a relation

If a relation is not in a desired normal form, it can be decomposed into multiple relations such that each decomposed relation satisfies the required normal form.

Suppose a relation R consists of a set of attributes $A(R) = \{A_1, A_2, \ldots, A_n\}$. A decomposition of R replaces R by a set of (two or more) relations $\{R_1, \ldots, R_m\}$ such that both the following conditions hold:

■
$$
\forall i : A(R_i) \subset A(R)
$$

■ $A(R_1) \cup \cdots \cup A(R_m) = A(R)$

K ロ > K @ > K 할 > K 할 > 1 할 > 9 Q Q*

Decomposition criteria

The decomposition of a relation might aim to satisfy different criteria as listed below:

- **Preservation of the same relation through join (lossless-join)**
- **Dependency preservation**
- **Repetition of information**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 안

Preservation of the same relation through join

KORK ERKER ORANDI

Testing for lossless-join decomposition

A decomposition of R into $\{R_1, R_2\}$ is lossless-join, iff $\mathcal{A}(\mathcal{R}_1) \cap \mathcal{A}(\mathcal{R}_2) \to \mathcal{A}(\mathcal{R}_1)$ or $\mathcal{A}(\mathcal{R}_1) \cap \mathcal{A}(\mathcal{R}_2) \to \mathcal{A}(\mathcal{R}_2)$ in $\mathcal{F}^+.$

Consider the example of a relation $R = \langle$ UVWXY $>$ and the set of $FDs = \{U \rightarrow VW, WX \rightarrow Y, V \rightarrow X, Y \rightarrow U\}.$

Note that, the decomposition $R_1 = \langle$ UVW $>$ and $R_2 = \langle$ WXY $>$ is not lossless-join because $R_1 \cap R_2 = W$, and W is neither a key for R_1 nor for R_2 .

However, the decomposition $R_1 = \langle$ UVW \rangle and $R_2 = \langle$ UXY \rangle is lossless-join because $R_1 \cap R_2 = \bigcup$, and U is a key for R_1 .

Dependency preservation

The decomposition of a relation R with respect to a set of FDs F replaces R with a set of (two or more) relations $\{R_1, \ldots, R_m\}$ with FDs $\{F_1,\ldots,F_m\}$ such that F_i is the subset of dependencies in F^+ (the closure of F) that include only the attributes in R_i .

The decomposition is *dependency preserving* iff $(\cup_i F_i)^+ = F^+$.

Note: Through dependency preserving decomposition, we want to minimize the cost of global integrity constraints based on FDs' (i.e., avoid big joins in assertions).

KORKAR KERKER DRAM

KORK ERKER ORANDI

Testing for dependency preserving decomposition

Consider the example of a relation $R = \langle XYZ \rangle$, having the key X, and the set of FDs = $\{X \rightarrow Y, Y \rightarrow Z, X \rightarrow Z\}$.

Note that, the decomposition $R_1 = \langle XY \rangle$ and $R_2 = \langle XZ \rangle$ is lossless-join but not dependency preserving because $F_1 = \{X \rightarrow$ Y} and $F_2 = \{X \rightarrow Z\}$ incur the loss of the FD $\{Y \rightarrow Z\}$, resulting into $(F_1 \cup F_2)^+ \neq F^+$.

However, the decomposition $R_1 = \langle XY \rangle$ and $R_2 = \langle YZ \rangle$ is lossless-join and also dependency preserving because $F_1 = \{X \rightarrow Y\}$ and $F_2 = \{Y \rightarrow Z\}$, satisfying $(F_1 \cup F_2)^+ = F^+$.

KORK ERKER ORANDI

Third normal form

Definition (Third normal form (3NF))

A relational schema R is in 3NF if for every non-trivial functional dependency $X \rightarrow A$, one of the following statements is true:

- \blacksquare X is a superkey of R.
- 2 A is a part of some key for R.

Note: A *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

Third normal form

The following relation is in 2NF but not in 3NF because Country is a non-prime attribute that depends on Company, which is again a non-prime attribute. Notably, the key in this relation is {PID}.

We can convert this relation into 3NF!!!

Third normal form

Approach: Decompose the relation into multiple relations.

Note: Each attribute in the left relation is a part of the superkey {Company, Country} and in the right relation is a part of the candidate key {PID}.

[Outline](#page-1-0) [First Normal Form](#page-2-0) [Second Normal Form](#page-7-0) [Third Normal Form](#page-11-0) [Boyce-Codd Normal Form](#page-28-0)

KORK ERKER ORANDI

Boyce-Codd normal form

Definition (Boyce-Codd normal form (BCNF))

A relational schema R is in BCNF if for every non-trivial functional dependency $X \rightarrow A$, X is a superkey of R.

Note: A *superkey* is a set of one or more attributes that can uniquely identify an entity in the entity set.

Boyce-Codd normal form

The following relation is in 3NF but not in BCNF because the attribute Price depends on non-superkey attributes.

We can convert this relation into BCNFIII

KORK ERKER ORANDI

Decomposition into BCNF – An algorithm

 $Result := \{R\}$ and $flag := FALSE$ Compute F^+

while NOT flag do

if There is a schema $R_i \in Result$ that is not in BCNF **then** Let $X \to Y$ be a non-trivial functional dependency that holds on R_i such that $(X \to R_i) \notin F^+$ and $X \cap Y = \phi$. $Result := (Result - R_i) \cup (R_i - Y) \cup (X, Y)$ // This is simply decomposing R into $R - Y$ and XY provided $X \rightarrow Y$ in R violates BCNF

else

 $flag := TRUE$ end if end while

KORK ERKER ORANDI

Decomposition into BCNF – An algorithm

 $Result := \{R\}$ and $flag := FALSE$ Compute F^+

while NOT flag do

if There is a schema $R_i \in Result$ that is not in BCNF **then** Let $X \to Y$ be a non-trivial functional dependency that holds on R_i such that $(X \to R_i) \notin F^+$ and $X \cap Y = \phi$. $Result := (Result - R_i) \cup (R_i - Y) \cup (X, Y)$ // This is simply decomposing R into $R - Y$ and XY provided $X \rightarrow Y$ in R violates BCNF

else

 $flag := TRUE$

end if

end while

Note: This decomposition process ensures lossless property

Decomposition into BCNF – An example

Given a relation $R = \langle ABCDPQVZ \rangle$, which is not in BCNF, having the key A and functional dependencies ${C\mathsf{P} \to \mathsf{A}}$, BD \rightarrow P, C \rightarrow B}.

Decomposition into BCNF – An example

Given a relation $R = \langle ABCDPQVZ\rangle$, which is not in BCNF, having the key A and functional dependencies ${C\rightarrow A, BD}$ \rightarrow P, C \rightarrow B}.

Solution: Let us start with BD \rightarrow P. Based on this, we decompose R and obtain $\langle ABCDQVZ\rangle$ and $\langle BDP\rangle$. Now \langle BDP $>$ is in BCNF (BD is the key).

Decomposition into BCNF – An example

Given a relation $R = \langle ABCDPQVZ\rangle$, which is not in BCNF, having the key A and functional dependencies ${C\rightarrow A, BD}$ \rightarrow P, C \rightarrow B}.

Solution: Let us start with BD \rightarrow P. Based on this, we decompose R and obtain $\langle ABCDQVZ\rangle$ and $\langle BDP\rangle$. Now \langle BDP $>$ is in BCNF (BD is the key). For $C \rightarrow B$. <ABCDQVZ> is not in BCNF. Therefore, we have further decomposition into $\langle \text{ACDQVZ} \rangle$ and $\langle \text{CB} \rangle$.

KORK ERKER ORANDI

Decomposition into BCNF – An example

Given a relation $R = \langle ABCDPQVZ\rangle$, which is not in BCNF, having the key A and functional dependencies ${C\rightarrow A, BD}$ \rightarrow P, C \rightarrow B}.

Solution: Let us start with BD \rightarrow P. Based on this, we decompose R and obtain $\langle ABCDQVZ\rangle$ and $\langle BDP\rangle$. Now \langle BDP $>$ is in BCNF (BD is the key). For $C \rightarrow B$, $\langle ABCDQVZ \rangle$ is not in BCNF. Therefore, we have further decomposition into <ACDQVZ> and <CB>. Thus, the decomposition $\langle \text{ACDQVZ}\rangle$, $\langle \text{CB}\rangle$ and $\langle \text{BDP}\rangle$ is a

lossless-join decomposition of R into BCNF.

Decomposition into BCNF – An example

Given a relation $R = \langle ABCDPQVZ\rangle$, which is not in BCNF, having the key A and functional dependencies ${C\rightarrow A, BD}$ \rightarrow P, C \rightarrow B}.

Solution: Let us start with BD \rightarrow P. Based on this, we decompose R and obtain $\langle ABCDQVZ\rangle$ and $\langle BDP\rangle$. Now \langle BDP $>$ is in BCNF (BD is the key).

For $C \rightarrow B$, $\langle ABCDQVZ \rangle$ is not in BCNF. Therefore, we have further decomposition into $\langle \text{ACDQVZ} \rangle$ and $\langle \text{CB} \rangle$.

Thus, the decomposition $\langle \text{ACDQVZ}\rangle$, $\langle \text{CB}\rangle$ and $\langle \text{BDP}\rangle$ is a lossless-join decomposition of R into BCNF.

Alternate solution: Suppose, we start with $C \rightarrow B$. Then the relation R would be decomposed into $\langle \text{ACDPQVZ} \rangle$ and $\langle \text{CB} \rangle$. The only dependencies that hold over $\langle \text{ACDPQVZ} \rangle$ are $\text{CP} \rightarrow \text{A}$ and the key dependency $A \rightarrow ACDPQVZ$. CP is a key. Hence the decomposed relations are in BCNF.

Comments

Note that

- **BCNF** is stronger than $3NF if$ a schema R is in BCNF then it is also in 3NF.
- **3NF** is stronger than 2NF if a schema R is in 3NF then it is also in 2NF.
- 2NF is stronger than $1NF if$ a schema R is in 2NF then it is also in 1NF.