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First normal form

The domain (or value set) of an attribute defines the set of values
it might contain.

A domain is atomic if elements of the domain are considered to be
indivisible units.

Company Make

Maruti WagonR, Ertiga

Honda City

Tesla RAV4

Toyota RAV4

BMW X1

Company Make

Maruti WagonR, Ertiga

Honda City

Tesla, Toyota RAV4

BMW X1

Only Company has atomic domain None of the attributes have atomic domains
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First normal form

Definition (First normal form (1NF))

A relational schema R is in 1NF iff the domains of all attributes in
R are atomic.

The advantages of 1NF are as follows:

It eliminates redundancy

It eliminates repeating groups.

Note: In practice, 1NF includes a few more practical constraints
like each attribute must be unique, no tuples are duplicated, and
no columns are duplicated.
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First normal form

The following relation is not in 1NF because the attribute Model is
not atomic.

Company Country Make Model Distributor

Maruti India WagonR LXI, VXI Carwala

Maruti India WagonR LXI Bhalla

Maruti India Ertiga VXI Bhalla

Honda Japan City SV Bhalla

Tesla USA RAV4 EV CarTrade

Toyota Japan RAV4 EV CarTrade

BMW Germany X1 Expedition CarTrade

We can convert this relation into 1NF in two ways!!!
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First normal form

Approach 1: Break the tuples containing non-atomic values into
multiple tuples.

Company Country Make Model Distributor

Maruti India WagonR LXI Carwala

Maruti India WagonR VXI Carwala

Maruti India WagonR LXI Bhalla

Maruti India Ertiga VXI Bhalla

Honda Japan City SV Bhalla

Tesla USA RAV4 EV CarTrade

Toyota Japan RAV4 EV CarTrade

BMW Germany X1 Expedition CarTrade
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First normal form

Approach 2: Decompose the relation into multiple relations.

Company Country Make

Maruti India WagonR

Maruti India Ertiga

Honda Japan City

Tesla USA RAV4

Toyota Japan RAV4

BMW Germany X1

Make Model Distributor

WagonR LXI Carwala

WagonR VXI Carwala

WagonR LXI Bhalla

Ertiga VXI Bhalla

City SV Bhalla

RAV4 EV CarTrade

RAV4 EV CarTrade

X1 Expedition CarTrade
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Partial dependency

The partial dependency X → Y holds in schema R if there is a
Z ⊂ X such that Z → Y .

We say Y is partially dependent on X if and only if there is a
proper subset of X that satisfies the dependency.

Note: The dependency A→ B implies if the A values are same,
then the B values are also same.
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Second normal form

Definition (Second normal form (2NF))

A relational schema R is in 2NF if each attribute A in R satisfies
one of the following criteria:

1 A is part of a candidate key.

2 A is not partially dependent on a candidate key.

In other words, no non-prime attribute (not a part of any candidate
key) is dependent on a proper subset of any candidate key.

Note: A candidate key is a superkey for which no proper subset is
a superkey, i.e. a minimal superkey.
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Second normal form

The following relation is in 1NF but not in 2NF because Country

is a non-prime attribute that partially depends on Company, which
is a proper subset of the candidate key {Company, Make, Model,
Distributor}.

Company Country Make Model Distributor

Maruti India WagonR LXI Carwala

Maruti India WagonR VXI Carwala

Maruti India WagonR LXI Bhalla

Maruti India Ertiga VXI Bhalla

Honda Japan City SV Bhalla

Tesla USA RAV4 EV CarTrade

Toyota Japan RAV4 EV CarTrade

BMW Germany X1 Expedition CarTrade

We can convert this relation into 2NF!!!
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Second normal form

Approach: Decompose the relation into multiple relations.

Company Country

Maruti India

Honda Japan

Tesla USA

Toyota Japan

BMW Germany

Company Make Model Distributor

Maruti WagonR LXI Carwala

Maruti WagonR VXI Carwala

Maruti WagonR LXI Bhalla

Maruti Ertiga VXI Bhalla

Honda City SV Bhalla

Tesla RAV4 EV CarTrade

Toyota RAV4 EV CarTrade

BMW X1 Expedition CarTrade

Note: Each attribute in the left relation is a part of the candidate
key {Company, Country} and in the right relation is a part of the
candidate key {Company, Make, Model, Distributor}.
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Functional dependency

The notion of functional dependency generalizes the notion of
superkey. Consider a relation schema R, and let X ⊆ R and
Y ⊆ R. The functional dependency X → Y holds on schema R if

t1[X ] = t2[X ],

in any legal relation r(R), for all pairs of tuples t1 and t2 in r , then

t1[Y ] = t2[Y ].
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Functional dependency

Armstrong’s axioms:

Reflexivity property: If X is a set of attributes and Y ⊆ X ,
then X → Y holds. (known as trivial functional dependency)

Augmentation property: If X → Y holds and γ is a set of
attributes, then γX → γY holds.

Transitivity property: If both X → Y and Y → Z holds,
then X → Z holds.

Other properties:

Union property: If X → Y holds and X → Z holds, then
X → YZ holds.

Decomposition property: If X → YZ holds, then both
X → Y and X → Z holds.

Pseudotransitivity property: If X → Y and γY → Z holds,
then Xγ → Z holds.
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Closure of functional dependencies (FDs)

We can find F+, the closure of a set of FDs F , as follows:

Initialize F+ with F
repeat

for each functional dependency f = X → Y ∈ F+ do
Apply reflexivity and augmentation properties on f and
include the resulting functional dependencies in F+

end for
for each pair of functional dependencies f1, f2 ∈ F+ do

if f1 and f2 can be combined together using the transitivity
property then

Include the resulting functional dependency in F+

end if
end for

until F+ does not further change
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Closure of functional dependencies (FDs) – An example

Consider a relation R = <UVWXYZ> and the set of FDs = {U →
V, U → W, WX → Y, WX → Z, V → Y}. Let us compute some
non-trivial FDs that can be obtained from this.

By applying the augmentation property, we obtain

1 UX → WX (from U → W)
2 WX → WXZ (from WX → Z)
3 WXZ → YZ (from WX → Y)

By applying the transitivity property, we obtain

1 U → Y (from U → V and V → Y)
2 UX → Z (from UX → WX and WX → Z)
3 WX → YZ (from WX → WXZ and WXZ → YZ)
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Closure of attribute sets

We can find A+, the closure of a set of attributes A, as follows:

Initialize A+ with A
repeat

for each functional dependency f = X → Y ∈ F+ do
if X ⊆ A+ then

A+ ← A+ ∪ Y
end if

end for
until A+ does not further change

Note: The closure is defined as the set of attributes that are
functionally determined by A under a set of FDs F .
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Closure of attribute sets

The usefulness of finding attribute closure is as follows:

Testing for superkey
– Compute A+ and check if R ⊆ A+

Testing functional dependencies
– To check if an FD X → Y holds, just check if Y ⊆ X+

– Same for checking if X → Y is in F+ for a given F

Computing closure of F
– For each A ⊆ A(R), we find the closure A+, and for each
S ⊆ A+, we output a functional dependency A→ S
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Closure of attribute sets – An example

Consider a relation R = <UVWXYZ> and the set of FDs = {U →
V, U → W, WX → Y, WX → Z, V → Y}. Let us compute UX+,
i.e., the closure of UX.

Initially UX+ = UX

Then we have UX+ = UVX (as U → V and U ⊆ UX)

Then we have UX+ = UVWX (as U → W and U ⊆ UVX)

Then we have UX+ = UVWXY (as WX → Y and WX ⊆
UVWX)

Finally, we have UX+ = UVWXYZ (as WX → Z and WX ⊆
UVWXY)

Note: The closure of UX covers all the attributes in R.
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Decomposition of a relation

If a relation is not in a desired normal form, it can be decomposed
into multiple relations such that each decomposed relation satisfies
the required normal form.

Suppose a relation R consists of a set of attributes
A(R) = {A1,A2, . . . ,An}. A decomposition of R replaces R by a
set of (two or more) relations {R1, . . . ,Rm} such that both the
following conditions hold:

∀i : A(Ri ) ⊂ A(R)

A(R1) ∪ · · · ∪ A(Rm) = A(R)
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Decomposition criteria

The decomposition of a relation might aim to satisfy different
criteria as listed below:

Preservation of the same relation through join (lossless-join)

Dependency preservation

Repetition of information
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Preservation of the same relation through join

↙
X Y Z

x1 y1 z1
x1 y2 z2

↘

X Y

x1 y1
x1 y2

X Z

x1 z1
x1 z2

X Z

x1 z1
x1 z2

Y Z

y1 z1
y2 z2

↘ ↙ ↘ ↙

X Y Z

x1 y1 z1
x1 y1 z2
x1 y2 z1
x1 y2 z2

X Y Z

x1 y1 z1
x1 y2 z2

Lossy-join decomposition Lossless-join decomposition
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Testing for lossless-join decomposition

A decomposition of R into {R1,R2} is lossless-join, iff
A(R1) ∩ A(R2)→ A(R1) or A(R1) ∩ A(R2)→ A(R2) in F+.

Consider the example of a relation R = <UVWXY> and the set of
FDs = {U → VW, WX → Y, V → X, Y → U}.

Note that, the decomposition R1 = <UVW> and R2 = <WXY>
is not lossless-join because R1 ∩ R2 = W, and W is neither a key
for R1 nor for R2.

However, the decomposition R1 = <UVW> and R2 = <UXY> is
lossless-join because R1 ∩ R2 = U, and U is a key for R1.
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Dependency preservation

The decomposition of a relation R with respect to a set of FDs F
replaces R with a set of (two or more) relations {R1, . . . ,Rm} with
FDs {F1, . . . ,Fm} such that Fi is the subset of dependencies in F+

(the closure of F) that include only the attributes in Ri .

The decomposition is dependency preserving iff (∪iFi )
+ = F+.

Note: Through dependency preserving decomposition, we want to
minimize the cost of global integrity constraints based on FDs’
(i.e., avoid big joins in assertions).
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Testing for dependency preserving decomposition

Consider the example of a relation R = <XYZ>, having the key
X, and the set of FDs = {X → Y, Y → Z, X → Z}.

Note that, the decomposition R1 = <XY> and R2 = <XZ> is
lossless-join but not dependency preserving because F1 = {X →
Y} and F2 = {X → Z} incur the loss of the FD {Y → Z},
resulting into (F1 ∪ F2)+ 6= F+.

However, the decomposition R1 = <XY> and R2 = <YZ> is
lossless-join and also dependency preserving because
F1 = {X → Y } and F2 = {Y → Z}, satisfying (F1 ∪ F2)+ = F+.
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Third normal form

Definition (Third normal form (3NF))

A relational schema R is in 3NF if for every non-trivial functional
dependency X → A, one of the following statements is true:

1 X is a superkey of R.

2 A is a part of some key for R.

Note: A superkey is a set of one or more attributes that can
uniquely identify an entity in the entity set.
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Third normal form

The following relation is in 2NF but not in 3NF because Country

is a non-prime attribute that depends on Company, which is again
a non-prime attribute. Notably, the key in this relation is {PID}.

PID Company Country Make Model Distributor

P01 Maruti India WagonR LXI Carwala

P02 Maruti India WagonR VXI Carwala

P03 Maruti India WagonR LXI Bhalla

P04 Maruti India Ertiga VXI Bhalla

P05 Honda Japan City SV Bhalla

P06 Tesla USA RAV4 EV CarTrade

P07 Toyota Japan RAV4 EV CarTrade

P08 BMW Germany X1 Expedition CarTrade

We can convert this relation into 3NF!!!



Outline First Normal Form Second Normal Form Third Normal Form Boyce-Codd Normal Form

Third normal form

Approach: Decompose the relation into multiple relations.

Company Country

Maruti India
Honda Japan
Tesla USA
Toyota Japan
BMW Germany

PID Company Make Model Distributor

P01 Maruti WagonR LXI Carwala
P02 Maruti WagonR VXI Carwala
P03 Maruti WagonR LXI Bhalla
P04 Maruti Ertiga VXI Bhalla
P05 Honda City SV Bhalla
P06 Tesla RAV4 EV CarTrade
P07 Toyota RAV4 EV CarTrade
P08 BMW X1 Expedition CarTrade

Note: Each attribute in the left relation is a part of the superkey
{Company, Country} and in the right relation is a part of the
candidate key {PID}.
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Boyce-Codd normal form

Definition (Boyce-Codd normal form (BCNF))

A relational schema R is in BCNF if for every non-trivial functional
dependency X → A, X is a superkey of R.

Note: A superkey is a set of one or more attributes that can
uniquely identify an entity in the entity set.
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Boyce-Codd normal form

The following relation is in 3NF but not in BCNF because the
attribute Price depends on non-superkey attributes.

PID Company Make Model Distributor Price

P01 Maruti WagonR LXI Carwala 415K

P02 Maruti WagonR VXI Carwala 470K

P03 Maruti WagonR LXI Bhalla 410K

P04 Maruti Ertiga VXI Bhalla 820K

P05 Honda City SV Bhalla 990K

P06 Tesla RAV4 EV CarTrade 1700K

P07 Toyota RAV4 EV CarTrade 1700K

P08 BMW X1 Expedition CarTrade 3520K

We can convert this relation into BCNF!!!
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Decomposition into BCNF – An algorithm

Result := {R} and flag := FALSE
Compute F+

while NOT flag do
if There is a schema Ri ∈ Result that is not in BCNF then

Let X → Y be a non-trivial functional dependency that
holds on Ri such that (X → Ri ) /∈ F+ and X ∩ Y = φ.
Result := (Result − Ri ) ∪ (Ri − Y ) ∪ (X ,Y ) // This is
simply decomposing R into R − Y and XY provided
X → Y in R violates BCNF

else
flag := TRUE

end if
end while

Note: This decomposition process ensures lossless property
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Decomposition into BCNF – An example

Given a relation R = <ABCDPQVZ>, which is not in BCNF,
having the key A and functional dependencies {CP → A, BD
→ P, C → B}.

Solution: Let us start with BD → P. Based on this, we
decompose R and obtain <ABCDQVZ> and <BDP>. Now
<BDP> is in BCNF (BD is the key).
For C → B, <ABCDQVZ> is not in BCNF. Therefore, we have
further decomposition into <ACDQVZ> and <CB>.
Thus, the decomposition <ACDQVZ>, <CB> and <BDP> is a
lossless-join decomposition of R into BCNF.
Alternate solution: Suppose, we start with C → B. Then the
relation R would be decomposed into <ACDPQVZ> and <CB>.
The only dependencies that hold over <ACDPQVZ> are CP → A
and the key dependency A → ACDPQVZ. CP is a key. Hence the
decomposed relations are in BCNF.
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Comments

Note that

BCNF is stronger than 3NF – if a schema R is in BCNF then
it is also in 3NF.

3NF is stronger than 2NF – if a schema R is in 3NF then it is
also in 2NF.

2NF is stronger than 1NF – if a schema R is in 2NF then it is
also in 1NF.
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