
Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Fundamentals of Database Systems
[Concurrency Control]

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
Indian Statistical Institute, Kolkata

October, 2019



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

1 Concurrency Control Protocols
Lock-based Protocols
Graph-based Protocols
Timestamp-based Protocols
Validation-based Protocols

2 Multiple Granularity

3 Multiversion Schemes

4 Concurrency in Indexes



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Basics

Concurrency control is the way to preserve isolation of
transactions while managing concurrent execution

Assumption: No failure occurs during concurrent execution.

We know that serializability ensures the consistency of a database.

So, concurrency control schemes are mostly based on the
serializability property.

Note: Serializable concurrency control might have adverse effects
on long-duration transactions.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Lock-based protocols – Basics

A lock is a mechanism to control concurrent access to a data
item in a mutually exclusive manner

The two most common lock modes are:

Exclusive (X) – Data item can be both read as well as written

Shared (S) – Data item can only be read

Lock requests are made to the concurrency control manager and a
transaction can proceed only after its request is granted.

Note: A lock held by a transaction on an item may be granted
another lock requested by another transaction.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Lock-based protocols – Basics

Definition (Lock compatibility)

If a transaction can be granted a lock A on an item immediately, in
spite of the presence of another lock B on the same data item,
then it is said that A is compatible with B.

S X
The lock compatibility relations: S True False

X False False

Definition (Locking protocol)

A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks. Locking protocols restrict the
set of possible schedules.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Implementation of locking

The lock manager uses a hash table indexed on the name of a data
item. It finds the linked list, in the order in which the requests
arrived, for a currently locked data item.

A lock table



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Lock-based protocols – Managing serializability

The following protocol does not guarantee serilizability:

Transaction T1

lock-S(ISIPC )
read (ISIPC )
unlock(ISIPC ) Updates on IIScPC is not admissible!!!
lock-S(IIScPC ) Updates on IIScPC is not admissible!!!
read (IIScPC )
unlock(IIScPC )

display(ISIPC+IIScPC )

Note: If IIScPC (or ISIPC ) gets updated in-between the reads of
ISIPC and IIScPC (or IIScPC and ISIPC ), then the sum will be
displayed wrong.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Lock-based protocols – Managing serializability

The following protocol guarantees serilizability:

Transaction T1

lock-S(ISIPC )
read (ISIPC )
lock-S(IIScPC )
read (IIScPC )

display(ISIPC+IIScPC )
unlock(ISIPC )
unlock(IIScPC )



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Lock-based protocols – Drawbacks

Transaction T1 Transaction T2

lock-X(ISIPC )
read(ISIPC )
ISIPC ← ISIPC - 10
write(ISIPC )

lock-S(IIScPC )
read(IIScPC )
lock-S(ISIPC )

lock-X(IIScPC )

Deadlock – lock-S(ISIPC ) causes T2 to wait for T1 to release its
lock on ISIPC , whereas lock-X(IIScPC ) causes T1 to wait for T2 to
release its lock on IIScPC .

Solution: T1 or T2 must be rolled back and the corresponding
lock should be released.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Lock-based protocols – Drawbacks

Transaction T1 Transaction T2 Transaction T3

lock-X(IIScPC )
lock-S(ISIPC )
read(ISIPC )
ISIPC ← ISIPC - 10

lock-S(ISIPC )
write(IIScPC )

read(ISIPC )
lock-X(ISIPC )

Starvation – lock-X(ISIPC ) causes T2 to wait for both T1 and T3

to release their locks on ISIPC , and T2 is repeatedly rolled back
due to deadlocks.

Solution: Concurrency control manager should be designed
appropriately.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Two-phase locking protocols – Basics

Working principle:

1 Phase 1 (Grow) – A transaction may obtain locks, but may
not release any lock.

2 Phase 2 (Shrink) – A transaction may release locks, but may
not obtain any new locks.

Two-phase locking protocols ensure conflict serializability.

Note: The serialization is determined based on the order of
transaction lock points (where a transaction acquires its final lock).



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Two-phase locking protocols – Implementation

Two-phase locking with lock conversions:

Phase 1
– can acquire a lock-S on the data item
– can acquire a lock-X on the data item
– can convert a lock-S to a lock-X (upgrade)

Phase 2
– can release a lock-S
– can release a lock-X
– can convert a lock-X to a lock-S (downgrade)



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Two-phase locking protocols – An example

Transaction T1 Transaction T2

lock-S(IIScPC )
lock-S(IIScPC )

lock-S(ISIPC )
lock-S(ISIPC )

lock-S(IITKPC )
lock-S(IITDPC )

unlock(IIScPC )
unlock(ISIPC )

lock-S(IITBPC )
upgrade(IIScPC )
write(IIScPC )

Note: Avoiding lock-X on IIScPC at the beginning provides more
concurrency to schedules. The lock can be upgraded as and when
required (not via unlock followed by a lock-X).



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Two-phase locking protocols – Drawbacks

Deadlock: In two-phase locking protocol, two transactions might
wait for each other to release their corresponding locks on two
different items.

Solution: Rollback any of the transactions causing the deadlock.

Cascading rollback: A single transaction failure leads to a series
of transaction rollbacks.

Solution: Either use strict two-phase locking protocol (a
transaction must hold all its exclusive locks till it commits/aborts)
or rigorous two-phase locking protocol (all locks are held till
commit/abort).



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Dirty reads

A dirty read (or uncommitted dependency) occurs when a
transaction is allowed to read a data item that has been updated
by another running transaction and not yet committed. It causes
cascading rollback (rollback in T1 causes rollbacks in T2,T3).

Transaction T1 Transaction T2 Transaction T3

lock-X(IIScPC )
lock-X(ISIPC )
read(ISIPC )
ISIPC ← ISIPC - 10
write(ISIPC ) ↑ rollback
unlock(ISIPC )

lock-X(ISIPC )
read(ISIPC )
write(ISIPC )
unlock(ISIPC )

lock-S(ISIPC )
read(ISIPC )



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Insertion and deletion under two-phase locking

It can be used with two-phase locking protocol.

Working principle:

1 A delete operation may be performed only if the transaction
deleting the tuple has an exclusive lock on the tuple to be
deleted.

2 A transaction that inserts a new tuple into the database is
given an exclusive lock on the tuple.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Insertion and deletion under two-phase locking – Drawback

Phantom phenomenon: A transaction that scans a relation and
a transaction that inserts a tuple in the relation might conflict in
spite of not accessing any tuple in common.

Solution: Associate a data item with the relation to represent the
information about what tuples the relation contains.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Graph-based protocols – Basics

Working principle:

1 Graph-based protocols impose a partial ordering → on the set
of all items I = I1, I2, ..., In.

2 It also includes the constraint that if Ii → Ij then any
transaction accessing both Ii and Ij must access Ii before
accessing Ij .

It implies that the set I may now be viewed as a directed acyclic
graph that is known as database graph.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Graph-based protocols – An example

Tree protocol:

Only exclusive locks are allowed.

The first lock by Ti may be on any item. Subsequently, an
item Q can be locked by Ti only if the parent of Q is
currently locked by Ti .

Data items may be unlocked at any time.

A data item that has been locked and unlocked by Ti cannot
subsequently be relocked by Ti



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Graph-based protocols – Visualization

Visualizing a tree protocol



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Timestamp-based protocols – Basics

In concurrency control, timestamps are implemented either with
the system clock or using a logical counter.

Working principle:

1 Each transaction (say Ti ) obtains a timestamp (say T S(Ti ))
on entering the system.

2 If an old transaction Ti has timestamp T S(Ti ), a new
transaction Tj is assigned a timestamp T S(Tj) such that
T S(Ti ) < T S(Tj).

This ensures concurrent execution and the timestamps determine
the serializability order.

Implementation schemes:

1 W-timestamp(Q) – The timestamp of a transaction that has
executed the last write(Q) successfully.

2 R-timestamp(Q) – The timestamp of a transaction that has
executed the last read(Q) successfully.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Timestamp-based protocols – Implementation

Timestamp-ordering protocol:

1: if Transaction Ti issues read(Q) then
2: if T S(Ti ) < W-timestamp(Q) then
3: Reject read(Q) and roll back Ti . // Ti needs to read a value of Q already

overwritten
4: else
5: Execute read(Q) and set R-timestamp(Q) = max{R-timestamp(Q),

T S(Ti )}.
6: end if
7: end if
8: if Transaction Ti issues write(Q) then
9: if T S(Ti ) < R-timestamp(Q) then

10: Reject write(Q) and roll back Ti . // The value of Q that Ti is producing
was needed previously, so it is assumed that it would never be produced

11: end if
12: If T S(Ti ) < W-timestamp(Q), reject write(Q) and roll back Ti . // Ti is

attempting to write an obsolete value of Q
13: Otherwise, execute the write operation and set W-timestamp(Q) = T S(Ti ).
14: end if

Note: Transactions arriving earlier cannot read/write later.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Timestamp-based protocols – Example I

See below an implementation of the timestamp-ordering protocol
on five transactions (T1, T2, T3, T4 and T5) having timestamps 3,
2, 4, 10 and 1, respectively.

T1 T2 T3 T4 T5

read(ISIPC )
read(IIScPC )

read(IIScPC )
write(IIScPC )
write(ISIPC )

read(ISIPC )
read(ISIPC )
abort

read(ISIPC )
write(IIScPC )

write(IIScPC )
commit

write(IIScPC )
write(ISIPC )



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Timestamp-based protocols – Revised implementation

Thomas’ write rule:

1: if Transaction Ti issues read(Q) then
2: if T S(Ti ) < W-timestamp(Q) then
3: Reject read(Q) and roll back Ti .
4: else
5: Execute read(Q) and set R-timestamp(Q) = max{R-timestamp(Q),

T S(Ti )}.
6: end if
7: end if
8: if Transaction Ti issues write(Q) then
9: if T S(Ti ) < R-timestamp(Q) then

10: Reject write(Q) and roll back Ti .
11: end if
12: If T S(Ti ) < W-timestamp(Q), ignore write(Q). // Ti is not rolled back∗

13: Otherwise, execute the write operation and set W-timestamp(Q) = T S(Ti ).
14: end if

∗It ensures view serializability for schedules that are not conflict
serializable.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Timestamp-based protocols – Advantages and drawbacks

Serializability guaranteed: Timestamp-ordering protocol ensures
serializability since all the arcs in the precedence graph do not form
any cycle in the precedence graph.

Freedom from deadlock: Timestamp-ordering protocol ensures
freedom from deadlock because no transaction ever waits.

Cascading rollback problem: A single transaction failure leads to
a series of transaction rollbacks.

Recoverability problem: A transaction may not be recoverable.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Validation-based protocols – Basics

It is also called optimistic concurrency control since transaction
executes fully in the hope that all will go well during validation.

Working principle:

1 Read and execution phase – Transaction Ti writes only to
temporary local variables.

2 Validation phase – Transaction Ti performs a “validation
test” to determine if local variables can be written without
violating serializability.

3 Write phase – If Ti is validated, the updates are applied to
the database; otherwise, Ti is rolled back.

Each transaction must go through the three aforementioned phases
in the same order.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Validation-based protocols – Basics

Implementation schemes:

1 Timestamp Start(Ti ) – The time when Ti started its
execution

2 Timestamp Validation(Ti ) – The time when Ti entered its
validation phase

3 Timestamp Finish(Ti ) – The time when Ti finished its write
phase

to increase concurrency, serializability order is determined by the
timestamp given at validation time i.e. T S(Ti ) is set to
Validation(Ti ).



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Validation-based protocols – An example

Validation test: To ensure one of the following things:

There is no overlapped execution

Writes of Ti and Tj do not affect reads of Tj and Ti ,
respectively.

1: for Tj with T S(Ti ) < T S(Tj ) do
2: if (Finish(Ti ) < Start(Tj )) or (Start(Tj ) < Finish(Ti ) < Validation(Tj ) and

the set of data items written by Ti does not intersect with the set of data
items read by Tj ) then

3: Commit Tj .
4: else
5: Abort Tj .
6: end if
7: end for



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Validation-based protocols – An example

Transaction T1 Transaction T2

read(IIScPC )
read(IIScPC )
IIScPC ← IIScPC - 10
read(ISIPC )
ISIPC ← ISIPC + 10

read(ISIPC )
< Validate >
display(ISIPC + IIScPC )

write(IIScPC )
write(ISIPC )



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Multiple granularity – Basics

It allows data items to be of various sizes and define a hierarchy of
data granularities, where the small granularities are nested within
larger ones.

Working principle:

1 It is represented graphically as a tree.

2 When a transaction locks a node in the tree explicitly, it
implicitly locks all the node’s descendants in the same mode.

Granularity of locking can be at two levels:

Fine granularity (lower in tree) – ensures high concurrency
and locking overhead

Coarse granularity (higher in tree) – ensures low concurrency
and locking overhead.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Multiple granularity – Basics

Different locking modes:

IS – Intention-shared lock that indicates explicit locking at a
lower level of the tree but only with shared locks.

IX – Intention-exclusive lock that indicates explicit locking at
a lower level with exclusive or shared locks.

S – Shared lock as used conventionally.

SIX – Shared and intention-exclusive lock in which the root
node (of the subtree) is S-locked and explicit locking is being
done at a lower level with exclusive locks.

X – Exclusive lock as used conventionally.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Multiple granularity – Basics

The lock compatibility relations:

IS IX S SIX X
IS True True True True False

IX True True False False False

S True False True False False

SIX True False False False False

X False False False False False



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Multiple granularity – Visualization

Hierarchy of granularity

Levels from the top to bottom: database (DB), area (A1,A2), file
(Fa,Fb,Fc) and record (ra1 , ra2 , . . . , ran , rb1 , . . . , rbk , rc1 , . . . , rcm)



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Multiple granularity – Implementation

Transaction Ti can lock a node Q, using the following rules:

1 The lock compatibility matrix must be observed.

2 The root of the tree must be locked first, and may be locked
in any mode.

3 A node Q can be locked by Ti in S or IS mode only if the
parent of Q is currently locked by Ti in either IX or IS mode.

4 A node Q can be locked by Ti in X, SIX, or IX mode only if
the parent of Q is currently locked by Ti in either IX or SIX
mode.

5 Ti can lock a node only if it has not previously unlocked any
node i.e. Ti is two-phase.

6 Ti can unlock a node Q only if none of the children of Q are
currently locked by Ti .



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Multiversion schemes – Timestamp ordering

Each data item Q has a sequence of versions < Q1,Q2, . . . ,Qm >.
Each version Qk contains three data fields:

Content – The value of version Qk .

W-timestamp(Qk) – The timestamp of the transaction that
wrote (created) version Qk .

R-timestamp(Qk) – The largest timestamp of a transaction
that successfully read version Qk .

Working principle:

1 When a transaction Ti creates a new version Qk of Q, set
W-timestamp(Qk) = T S(Ti ) and R-timestamp(Qk) =
T S(Ti ).

2 Update R-timestamp(Qk) with T S(Tj) whenever a
transaction Tj reads Qk , and T S(Tj) > R-timestamp(Qk).



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Multiversion schemes – Two-phase Locking

Differentiates between read-only transactions and update
transactions.

Working principle:

1 Update transactions acquire read and write locks, and hold all
locks up to the end of the transaction. That is, update
transactions follow rigorous two-phase locking.

2 Read-only transactions are assigned a timestamp by reading
the current value of timestamp counter before they start
execution; they follow the multiversion timestamp-ordering
protocol for performing reads.



Outline Concurrency Control Protocols Multiple Granularity Multiversion Schemes Concurrency in Indexes

Concurrency in indexes – Basics

This approach can solve the phantom phenomenon.

Working principle:

1 Every relation must have at least one index.

2 A transaction can access tuples only after finding them
through one or more indices on the relation.

3 A transaction Ti that performs a read (lookup) must lock all
the index leaf nodes that it accesses in shared mode, even if
the leaf node does not contain any tuple satisfying the index
lookup.

4 A transaction Ti that inserts, updates or deletes a tuple ti in
a relation r must update all indices to r and must obtain
exclusive locks on all index leaf nodes affected by the
insert/update/delete.

5 The rules of the two-phase locking protocol must be observed.


	Concurrency Control Protocols
	Lock-based Protocols
	Graph-based Protocols
	Timestamp-based Protocols
	Validation-based Protocols

	Multiple Granularity
	Multiversion Schemes
	Concurrency in Indexes

