Fundamentals of Database Systems

[Concurrency Control]

Malay Bhattacharyya

Assistant Professor

Machine Intelligence Unit
Indian Statistical Institute, Kolkata

October, 2019

Concurrency Control Protocols
m Lock-based Protocols
m Graph-based Protocols
m Timestamp-based Protocols
m Validation-based Protocols

Multiple Granularity
Multiversion Schemes

Concurrency in Indexes

Concurrency Control Protocols

Basics

Concurrency control is the way to preserve isolation of
transactions while managing concurrent execution

Assumption: No failure occurs during concurrent execution.

We know that serializability ensures the consistency of a database.

So, concurrency control schemes are mostly based on the
serializability property.

Note: Serializable concurrency control might have adverse effects
on long-duration transactions.

Concurrency Control Protocols
©0000000000000

Lock-based protocols — Basics

A lock is a mechanism to control concurrent access to a data
item in a mutually exclusive manner
The two most common lock modes are:

m Exclusive (X) — Data item can be both read as well as written

m Shared (S) — Data item can only be read

Lock requests are made to the concurrency control manager and a
transaction can proceed only after its request is granted.

Note: A lock held by a transaction on an item may be granted
another lock requested by another transaction.

Concurrency Control Protocols
O®000000000000

Lock-based protocols — Basics

Definition (Lock compatibility)

If a transaction can be granted a lock A on an item immediately, in
spite of the presence of another lock B on the same data item,
then it is said that A is compatible with B.

wn

True | False
X | False | False

The lock compatibility relations:

Definition (Locking protocol)

A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks. Locking protocols restrict the
set of possible schedules.

Concurrency Control Protocols
0O®00000000000

Implementation of locking

The lock manager uses a hash table indexed on the name of a data
item. It finds the linked list, in the order in which the requests
arrived, for a currently locked data item.

7 123

-]
T23 T 8 T2

T8

A lock table

Concurrency Control Protocols
000®0000000000

Lock-based protocols — Managing serializability

The following protocol does not guarantee serilizability:

Transaction T;

|OCk-S(|S|pc)
read (ISlpc)
unlock(1Slp¢) Updates on IIScpc is not admissible!!!
lock-S(11Scpc) Updates on IIScpc is not admissible!!!

read (11Scpc)
unlock(l1Scpc)
display(ISlpc+11Scpc)

Note: If 1IScpc (or ISIpc) gets updated in-between the reads of
ISlpc and 1IScpe (or 1IScpe and ISlpc), then the sum will be
displayed wrong.

Concurrency Control Protocols
0000®000000000

Lock-based protocols — Managing serializability

The following protocol guarantees serilizability:

Transaction T;
|OCk—S(|S|Pc)
read (ISlpc)
lock-S(11Scpc)
read (l1Scpc)

display(ISlpc+11Scpc)
unlock(1Slpc)
unlock(11Scpc)

Concurrency Control Protocols
00000e00000000

Lock-based protocols — Drawbacks

Transaction T; [Transaction T,
|0Ck—X(|S|Pc)
read(ISIpc)

|S|pc — |S|pc -10
write(ISIpc)

lock-S(11Scpc)
read(11Scpc)
lock-S(ISIpc)

lock-X(l1Scpc)

Deadlock — lock-S(ISlp¢c) causes T; to wait for Ty to release its
lock on ISlpc, whereas lock-X(l1Scpc) causes T; to wait for T; to
release its lock on /IScpc.

Solution: T3 or T, must be rolled back and the corresponding
lock should be released.

Concurrency Control Protocols
000000®0000000

Lock-based protocols — Drawbacks

Transaction T; \ Transaction T, | Transaction T3
lock-X(11Scpc)
|0Ck—S(|S|pc)
read(ISlpc)
ISlpc < ISlpc - 10

|OCk—S(|S|pc)
write(l1Scpc)

read(ISlpc)

lock-X(ISlpc)

Starvation — lock-X(ISlpc) causes T, to wait for both T; and T3
to release their locks on ISlpc, and T is repeatedly rolled back
due to deadlocks.

Solution: Concurrency control manager should be designed
appropriately.

Concurrency Control Protocols
0000000e000000

Two-phase locking protocols — Basics

Working principle:
Phase 1 (Grow) — A transaction may obtain locks, but may
not release any lock.

Phase 2 (Shrink) — A transaction may release locks, but may
not obtain any new locks.

Two-phase locking protocols ensure conflict serializability.

Note: The serialization is determined based on the order of
transaction lock points (where a transaction acquires its final lock).

Concurrency Control Protocols
[slelelelelelele] YoloTolele)

Two-phase locking protocols — Implementation

Two-phase locking with lock conversions:

m Phase 1

— can acquire a lock-S on the data item

— can acquire a lock-X on the data item

— can convert a lock-S to a lock-X (upgrade)
m Phase 2

— can release a lock-S

— can release a lock-X
— can convert a lock-X to a lock-S (downgrade)

Concurrency Control Protocols
000000000 e0000

Two-phase locking protocols — An example

Transaction T, | Transaction T,
lock-S(11Scpc)

lock-S(I1Scpc)
|OCk—S(|S|pc)
lock-S(ISlpc)
lock-S(IITKpc)
|OCk—S(||TDpc)
unlock(11Scpc)
unlock(ISlpc)
|OCk—S(||TBPc)
upgrade(l1Scpc)
write(l1Scpc)

Note: Avoiding lock-X on IIScpc at the beginning provides more
concurrency to schedules. The lock can be upgraded as and when
required (not via unlock followed by a lock-X).

Concurrency Control Protocols
[sleleleleleleleleTe] Yololo)

Two-phase locking protocols — Drawbacks

Deadlock: In two-phase locking protocol, two transactions might
wait for each other to release their corresponding locks on two
different items.

Solution: Rollback any of the transactions causing the deadlock.

Cascading rollback: A single transaction failure leads to a series
of transaction rollbacks.

Solution: Either use strict two-phase locking protocol (a
transaction must hold all its exclusive locks till it commits/aborts)
or rigorous two-phase locking protocol (all locks are held till
commit/abort).

Concurrency Control Protocols
00000000000 e00

Dirty reads

A dirty read (or uncommitted dependency) occurs when a
transaction is allowed to read a data item that has been updated
by another running transaction and not yet committed. It causes
cascading rollback (rollback in T; causes rollbacks in T, T3).

Transaction T;

Transaction T, ‘ Transaction T3
|0Ck—X(||SCPc)

|OCk—X(|S|pc)
read(1Slpc)

|S|pc “— |S|pc -10
write(ISlpc) 1 rollback
unlock(ISlpc)
|0Ck—X(|S|P(_‘)
read(ISlpc)
Wl’ite(|S|pc)
unlock(ISlpc)
lock-S(ISlpc)
read(ISlpc)

Concurrency Control Protocols
0000000000008

Insertion and deletion under two-phase locking

It can be used with two-phase locking protocol.

Working principle:
A delete operation may be performed only if the transaction

deleting the tuple has an exclusive lock on the tuple to be
deleted.

A transaction that inserts a new tuple into the database is
given an exclusive lock on the tuple.

Concurrency Control Protocols
0000000000000e

Insertion and deletion under two-phase locking — Drawback

Phantom phenomenon: A transaction that scans a relation and
a transaction that inserts a tuple in the relation might conflict in
spite of not accessing any tuple in common.

Solution: Associate a data item with the relation to represent the
information about what tuples the relation contains.

Concurrency Control Protocols
®00

Graph-based protocols — Basics

Working principle:
Graph-based protocols impose a partial ordering — on the set
of all items | = I, b, ..., I,.

It also includes the constraint that if /; — /; then any
transaction accessing both /; and /; must access /; before
accessing /;.

It implies that the set / may now be viewed as a directed acyclic
graph that is known as database graph.

Concurrency Control Protocols
oeo

Graph-based protocols — An example

Tree protocol:
m Only exclusive locks are allowed.

m The first lock by T; may be on any item. Subsequently, an
item @ can be locked by T; only if the parent of Q is
currently locked by T;.

Data items may be unlocked at any time.

A data item that has been locked and unlocked by T; cannot
subsequently be relocked by T;

Concurrency Control Protocols
ooe

Graph-based protocols — Visualization

/@@

®

@'@@@@
@

Visualizing a tree protocol

Concurrency Control Protocols
®0000

Timestamp-based protocols — Basics

In concurrency control, timestamps are implemented either with
the system clock or using a logical counter.

Working principle:

Each transaction (say T;) obtains a timestamp (say 7S(T;))
on entering the system.

If an old transaction T; has timestamp 7S(T;), a new
transaction T; is assigned a timestamp 7'S(T;) such that
TS(T:) < TS(T;).

This ensures concurrent execution and the timestamps determine
the serializability order.

Implementation schemes:
W-timestamp(Q) — The timestamp of a transaction that has
executed the last write(Q) successfully.
R-timestamp(Q) — The timestamp of a transaction that has
executed the last read(Q) successfully.

Concurrency Control Protocols
©0®000

Timestamp-based protocols — Implementation

Timestamp-ordering protocol:

W

if Transaction T; issues read(Q) then
if T7S(T;) < W-timestamp(Q) then
Reject read(Q) and roll back T;. // T; needs to read a value of Q already
overwritten
else
Execute read(Q) and set R-timestamp(Q) = max{R-timestamp(Q),
TS(T)}
end if
end if
if Transaction T; issues write(Q) then
if 7S(T;) < R-timestamp(Q) then
Reject write(Q) and roll back T;. // The value of Q that T; is producing
was needed previously, so it is assumed that it would never be produced
end if
If TS(T;) < W-timestamp(Q), reject write(Q) and roll back T;. // T; is
attempting to write an obsolete value of Q
Otherwise, execute the write operation and set W-timestamp(Q) = TS(T;).

. end if

Note: Transactions arriving earlier cannot read/write later.

Concurrency Control Protocols
©0®00

Timestamp-based protocols — Example |

See below an implementation of the timestamp-ordering protocol
on five transactions (T1, T2, T3, T4 and Ts) having timestamps 3,
2, 4, 10 and 1, respectively.

T1 T T3 Ta Ts
read(ISlpc)
read(11Scpc)
read(lIScpc)
write(l1Scpc)
Wl’ite(|5|pc)
read(ISlpc)
read(ISlpc)
abort

read(ISlpc)
Write(”SCpc)
write(l1Scpc)
commit
write(l1Scpc)
Wl’ite(|S|Pc)

Concurrency Control Protocols
oooe0

Timestamp-based protocols — Revised implementation

Thomas’ write rule:

1: if Transaction T; issues read(Q) then

2: if 7S(T;) < W-timestamp(Q) then

3: Reject read(Q) and roll back T;.

4: else

5: Execute read(Q) and set R-timestamp(Q) = max{R-timestamp(Q),

TS(T)}

6: end if

7: end if

8: if Transaction T; issues write(Q) then

9: if 7S(T;) < R-timestamp(Q) then
10: Reject write(Q) and roll back T;.

11: end if

12: If TS(T;) < W-timestamp(Q), ignore write(Q). // T; is not rolled back*
13: Otherwise, execute the write operation and set W-timestamp(Q) = TS(T;).
14: end if

*It ensures view serializability for schedules that are not conflict
serializable.

Concurrency Control Protocols
ooooe

Timestamp-based protocols — Advantages and drawbacks

Serializability guaranteed: Timestamp-ordering protocol ensures
serializability since all the arcs in the precedence graph do not form
any cycle in the precedence graph.

Freedom from deadlock: Timestamp-ordering protocol ensures
freedom from deadlock because no transaction ever waits.

Cascading rollback problem: A single transaction failure leads to
a series of transaction rollbacks.

Recoverability problem: A transaction may not be recoverable.

Concurrency Control Protocols
®000

Validation-based protocols — Basics

It is also called optimistic concurrency control since transaction
executes fully in the hope that all will go well during validation.

Working principle:
Read and execution phase — Transaction T; writes only to
temporary local variables.

Validation phase — Transaction T; performs a “validation
test” to determine if local variables can be written without
violating serializability.

Write phase — If T; is validated, the updates are applied to
the database; otherwise, T; is rolled back.

Each transaction must go through the three aforementioned phases
in the same order.

Concurrency Control Protocols
oeoo

Validation-based protocols — Basics

Implementation schemes:
Timestamp Start(7;) — The time when T; started its
execution
Timestamp Validation(T;) — The time when T; entered its
validation phase
Timestamp Finish(T;) — The time when T; finished its write
phase
to increase concurrency, serializability order is determined by the

timestamp given at validation time i.e. TS(T;) is set to
Validation(T;).

Concurrency Control Protocols
ooeo

Validation-based protocols — An example

Validation test: To ensure one of the following things:
m There is no overlapped execution
m Writes of T; and T; do not affect reads of T; and T;,
respectively.

Start _Validation Finish Start _Validation Finish

T; Start _Validation Finish T; Start Validation Finish

]

1: for T; with TS(T;) < TS(Tj) do
2: if (Finish(T;) < Start(T;)) or (Start(T;) < Finish(T;) < Validation(T;) and
the set of data items written by T; does not intersect with the set of data
items read by T;) then
Commit T;.
else
Abort T;.
end if
end for

Nogs®

Concurrency Control Protocols
oooe

Validation-based protocols — An example

Transaction T3

Transaction 7>

read(l1Scpc)

read(ISlpc)
< Validate >
display(ISlpc + IScpc)

read(lIScpc)

||SCPC — ||SCPC - 10
read(ISlpc)

ISlpc < ISlpc + 10

write(l1Scpc)
Write(|5|pc)

Multiple Granularity

Multiple granularity — Basics

It allows data items to be of various sizes and define a hierarchy of
data granularities, where the small granularities are nested within

larger ones.

Working principle:
It is represented graphically as a tree.
When a transaction locks a node in the tree explicitly, it
implicitly locks all the node's descendants in the same mode.
Granularity of locking can be at two levels:
m Fine granularity (lower in tree) — ensures high concurrency
and locking overhead
m Coarse granularity (higher in tree) — ensures low concurrency
and locking overhead.

Multiple Granularity

Multiple granularity — Basics

Different locking modes:

m IS — Intention-shared lock that indicates explicit locking at a
lower level of the tree but only with shared locks.

m IX - Intention-exclusive lock that indicates explicit locking at
a lower level with exclusive or shared locks.

S — Shared lock as used conventionally.

SIX — Shared and intention-exclusive lock in which the root
node (of the subtree) is S-locked and explicit locking is being
done at a lower level with exclusive locks.

m X — Exclusive lock as used conventionally.

Multiple Granularity

Multiple granularity — Basics

The lock compatibility relations:

IS IX S SIX X
IS | True | True | True | True | False
IX | True | True | False | False | False
S True | False | True | False | False

SIX | True | False | False | False | False
X False | False | False | False | False

Multiple Granularity

Multiple granularity — Visualization

Hierarchy of granularity

Levels from the top to bottom: database (DB), area (A1, A2), file
(Fa, Fb, Fc) and record (ray, Fays -« s Faps hys s s ey« -5 Fem)

Multiple Granularity

Multiple granularity — Implementation

Transaction T; can lock a node Q, using the following rules:
The lock compatibility matrix must be observed.
The root of the tree must be locked first, and may be locked
in any mode.
A node Q can be locked by T; in S or IS mode only if the
parent of Q is currently locked by T; in either IX or IS mode.
A node Q@ can be locked by T; in X, SIX, or IX mode only if

the parent of Q is currently locked by T; in either IX or SIX
mode.

T; can lock a node only if it has not previously unlocked any
node i.e. T; is two-phase.

[@ T; can unlock a node @ only if none of the children of Q are
currently locked by T;.

Multiversion Schemes

Multiversion schemes — Timestamp ordering

Each data item @ has a sequence of versions < Q1, @2, ..., Qm >.
Each version Qi contains three data fields:

m Content — The value of version Q.

m W-timestamp(Qx) — The timestamp of the transaction that
wrote (created) version Q.

m R-timestamp(Q) — The largest timestamp of a transaction
that successfully read version Q.

Working principle:

When a transaction T; creates a new version Q of Q, set
W-timestamp(Qx) = TS(T;) and R-timestamp(Qx) =
TS(T).

Update R-timestamp(Qx) with TS(T;) whenever a
transaction T reads Q, and 7S(T;) > R-timestamp(Q).

Multiversion Schemes

Multiversion schemes — Two-phase Locking

Differentiates between read-only transactions and update
transactions.

Working principle:
Update transactions acquire read and write locks, and hold all

locks up to the end of the transaction. That is, update
transactions follow rigorous two-phase locking.

Read-only transactions are assigned a timestamp by reading
the current value of timestamp counter before they start
execution; they follow the multiversion timestamp-ordering
protocol for performing reads.

Concurrency in Indexes

Concurrency in indexes — Basics

This approach can solve the phantom phenomenon.
Working principle:
Every relation must have at least one index.

A transaction can access tuples only after finding them
through one or more indices on the relation.

A transaction T; that performs a read (lookup) must lock all
the index leaf nodes that it accesses in shared mode, even if
the leaf node does not contain any tuple satisfying the index
lookup.

A transaction T; that inserts, updates or deletes a tuple t; in
a relation r must update all indices to r and must obtain
exclusive locks on all index leaf nodes affected by the
insert/update/delete.

The rules of the two-phase locking protocol must be observed.

	Concurrency Control Protocols
	Lock-based Protocols
	Graph-based Protocols
	Timestamp-based Protocols
	Validation-based Protocols

	Multiple Granularity
	Multiversion Schemes
	Concurrency in Indexes

