
To do …
q App layer principles
q A few protocols
q Socket programming

Application Layer and Socket Programming



Network applications
When developing a new network application
– Write software that must run on multiple end systems

• No need to write code for core routers

– that communicate with each other
How should these applications be organized?

2

Server

Clients

Client-server
• Clients only talk to servers
• Servers are always-on, dedicated 

machines with well-known 
addresses

Peers

Peer-to-peer
• Minimal or no reliance on servers
• Peers, typically user-controlled,  

connect directly to provide the 
service (so, self-scaling)

• Unmanaged … security, 
performance, reliability?



Communicating processes
Processes communicate exchanging messages
– Each acting, at a given point, as client or server
– Client – the process that initiates the connections
– Server – the one that wats to be connected to

Processes send/receive mgs through a SW interface: a socket
– No control over the transport implementation, but can choose which 

and perhaps fix some parameters

3

Host or 
server

process

TCP with 
buffers, 
variables

socket

Controlled by 
app developerprocess

TCP with 
buffers, 
variables

socket
Controlled by OS

Host or 
server



Communicating processes
End-point of a connection – a socket
– Socket address – IP address + port number (16-bit)
– On the client – ephemeral, assigned by kernel
– On the server – well-known port (e.g., web 80, SMTP 25)

4

Socket – create socket
Bind – assign address
Connect – connect to listening socket

Socket – create socket
Bind – assign address, port
Listen – listen for clients

Both can read/write from the connection
Both can call close to end the connection

Accept - accept connection

Client Server



A simple client

5

/* GetHeadInfo 
*/ 
package main 
import ( 

"net" 
"os" 
"fmt" 
"io/ioutil" 

) 

func main() { 
if len(os.Args) != 2 { 

fmt.Fprintf(os.Stderr, "Usage: %s host:port ", os.Args[0])
os.Exit(1) 

} 
service := os.Args[1] 

tcpAddr, err := net.ResolveTCPAddr("tcp4", service) 
checkError(err) 

conn, err := net.DialTCP("tcp", nil, tcpAddr) 
checkError(err) 

_, err = conn.Write([]byte("HEAD / HTTP/1.0\r\n\r\n")) 
checkError(err) 

result, err := ioutil.ReadAll(conn) 
checkError(err) 

fmt.Println(string(result)) 
os.Exit(0) 

} 

func checkError(err error) { 
if err != nil { 

fmt.Fprintf(os.Stderr, "Fatal error: %s", err.Error()) 
os.Exit(1) 

} 
}

% ./GetHeadInfo www.google.com:80
…

http://www.google.com/


Available Internet transport services
Many networks provide more than one transport protocol
– How to choose? That which best matches your application’s needs

What can they offer?
– Reliable data transfer

• Not needed for a loss-tolerant app, but good otherwise
– Throughput

• Available throughput can fluctuate; minimum throughput guarantees?
– Timing

• Timing guarantees (like max delay)
– Security

• Encrypt data, can check data integrity or end-point authentication

6



Transport Services on the Internet
Two main transport protocols – TCP and UDP
– TCP

• Connection-oriented, full-duplex, reliable transfer service
• Includes a congestion control mechanism

– UDP
• Connectionless, lightweight transport, minimal service
• No congestion control

What you don’t get
– No throughput or timing guarantees
– What wait? How can we run time-sensitive apps? You can, 

there are just no timing guarantees

7



Some network applications and their protocols
Application-layer protocol  defines
– Type of msgs exchanged
– Syntax of the various msg types
– Semantics of the fields
– Rules for determining when and how a process sends/responds to msgs

Some protocols are defined in RFCs (e.g., HTTP, RFC 2616), 
Others are proprietary (e.g., Skype)
Next we’ll look at a few examples
– Web and HTTP, eMail and SMPT, DNS, P2P

8



The Web and HTTP
In the early 90s, a new app – WWW – caught the public’s eye
– Part of  the appeal, an ‘on-demand’ service

• Unlike broadcast TV or radio – what you want, when you want it
– Easy to access, to publish, to navigate and to get tangled up

HyperText Transfer Protocol (HTTP)
– Web’s application-layer protocol (RFC 1945, RFC 26615), runs over TCP
– A web page made of objects – a base page and several referenced 

objects with the objects’ URLs (uniform resource locator)
– URLs have the object’s hosting server and the object’s pathname

http://www.someschool.edu/someDpt/pic.gif

9



HTTP
Client makes a request, and server sends a response
Request specifies
– A human-readable header with: URL, method, some optional headers
– An optional body, storing raw data (bytes)

Response includes
– A human-readable header with: response code, some optional headers
– An optional body

HTTP is stateless – server remembers nothing about past 
requests from this client; request must be self-contained
– Stateless protocols are simpler and easier to scale, any of multiple 

servers can reply



Persistent and non-persistent connections
Client and servers may need to communicate for a while
– When using TCP, do you want a connection per request/response or do 

you want them all over the same connection?
HTTP with non-persistent connections
– Client initiate a TCP connection
– Client send an HTTP request
– Server process request, encapsulate and sends response
– Server tells TCP to close TCP connection (once done)
– Client gets response, TCP connection is closed …

This could be done serially – 10 TCP connections one after the 
other – or with some of them in parallel

11

Web page with a 
base document +
10 objects? 
Repeat 11 times



Time to request and receive an HTML file
A coarse estimate – 1 RTTs for first two parts of TCP 3-way 
handshake plus request (combined with third part) and response 
– 2 RTTs + transmission time at the server for the HTML file

12

Server

Client

Time to 
transmit a file

RTT RTTRequest 
file

Initiate TCP
connection

Entire file
received



HTTP with Persistent Connections
Issues with non-persistent connections
– Need to established a new connection with each requested object, 

allocating TCP buffers, variables, …
– Each objects pays 2 RTT for delivery

HTTP 1.1 – Persistent connections
– Server leaves the TCP connection open (configurable timeout of 10-15s)
– Multiple web pages residing on the same server can be sent to the 

same client over it
– Default mode, pipelining; HTTP/2 allows multiple requests interleaving 

and prioritization

13



HTTP Message Format – Requests 

14

method sp URL sp version cr lf
Header field name sp value cr lf

Header field name sp value cr lf
cr lf

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
Connection: close
User-agent: Mozilla/5.0
Accept-language: fr

Request line

Header lines

Entity body

Empty line

GET: to request a data
POST: to post data to the server, and 
perhaps get a response, too.s commonly
PUT: to create a new document on the 
server.
DELETE: to delete a document.
HEAD: like GET, but just return headers

http://www.someschool.edu/


HTTP Message Format – Response 

15

version sp Status code sp phrase cr lf
Header field name sp value cr lf

Header field name sp value cr lf
cr lf

HTTP/1.1 200 OK
Connection: close
Date: Tue, 17 Sep 2019 15:56:45 GMT
Server: Apache
Last-Modified: Tue, 18 Aug 2015 15:11:03 GMT
Content-Length: 221
Content-Type: text/html
... Data ...

Status line

Header lines

Entity body

Empty line

200 OK: success
301 Moved Permanently: redirects to 
another URL
403 Forbidden: lack permission
404 Not Found: URL is bad
500 Internal Server Error

… 



Cookies anyone?
HTTP is stateless, easier for server design and higher scalability
But sometimes you want to identify users across interactions
– To restrict access, to serve specific content, … → cookies [RFC 6265]

Four components
– A cookie header line in the HTTP response
– A cookie header line in the request
– A cookie file kept on the user’s end and managed by the user’s browser
– A back-end database at the web site

16



Keeping user state with cookies

17

Susana

Server

ebay:8734 ebay:8734
Amazon: 1678

Us
ua

l h
ttp

 
re

qu
es

t m
sg

Server creates ID 
1678 for user

Usual http response; 

set-cookie: 1678

Us
ua

l h
ttp

 re
qu

es
t; 

co
ok

ie:
 16

78

Cookie specific
action

Usual http response

Us
ua

l h
ttp

 re
qu

es
t; 

co
ok

ie:
 16

78

Cookie specific
action

Usual http response

Some time later ….
Amazon: 1678
ebay:8734

Entry in DB

access
access

• First time visit to Amazon, new cookie
• Second time, bring the cookie

along …
• One-click shopping
• Personalized ads
• Privacy concerns 



Third party cookie, pixels, and tags
Recall, that an HTTP response may include a cookie.
– Cookies are random strings stored by your browser and included in every request to 

the same domain.
– Cookies are a way for the browser to remind a website of your identity.

Third party cookies are cookies from a domain different that the currently 
viewed web page.
– Often enabled with a one-pixel GIF image included in the page:
<img src="http://facebook.com/tracker/pix.gif">
– Causes browser to send a request to facebook.com (including your Facebook cookie) 

even though I’m visiting a page unrelated to Facebook.
– The request has a “Referer:” header listing the current URL.
– Thus, Facebook (for example) learns about everything you do on the web. 



Visiting Northwestern’s webpage (with uBlock Origin)



New York Times homepage (allowing all cookies)



New York Times homepage (allowing all cookies)



Web caching
Web cache, aka proxy server
– Serves requests on behalf of an origin web server
– Typically purchased/installed by an ISP 

Benefits
– Can reduce response time for a client request, more so if the bottleneck 

bw client-to-server << clieny-to-proxy
– Can reduce traffic on the access link → $$$
– ... Content Distribution Networks (CDNs)

But what if the copy is stale?
– Conditional GET “if-modified-since” header line
– If not modified since, 304 response 

22

Public Internet

Institutional network

Local cache



Email and SMTP
Internet first popular application
– Like Snail mail, asynchronous

Three major components
– User agents – Let users read/reply/forward/… emails (e.g., Apple Mail)
– Mail servers – Each user has a queue

where emails sent/received are kept
after sent/before delivery

– Simple Mail Transfer Protocol (SMPT) –
Application-layer protocol to exchange
emails between mail servers

23

mail
server

mail
server

mail
server

SMTP
SMTP

user
agent

user
agent

user
agent

user
agentuser

agent

SMTP



Simple Mail Transport Protocol
Another protocol built on top of TCP (RFC 2821)
Original RFC from 1982 but older than that
– A bit archaic – body of 7 of all mail messages in 7-bit ASCII
– Encoding/decoding of binary multimedia to ASCII before/after transfer

Basic operation
– Alice invokes user agent (UA) to send email to bob@someschool.edu
– Alice’s UA send msg to her email server, where it is put in the queue
– Client’s side of SMTP running on Alice’s server sends msg over TCP
– …
– No intermediate

mail servers mail
server

mail
server

SMTPUser 
agent

User 
agent

24

https://www.ietf.org/rfc/rfc2821.txt


Example
S: means server
C: means client

S: 220 smtp.example.com ESMTP Postfix
C: HELO relay.example.com
S: 250 smtp.example.com, I am glad to meet you
C: MAIL FROM:<bob@example.com>
S: 250 Ok
C: RCPT TO:<alice@example.com>
S: 250 Ok
C: RCPT TO:<theboss@example.com>
S: 250 Ok
C: DATA
S: 354 End data with <CR><LF>.<CR><LF>
C: From: "Bob Example" bob@example.com
C: To: Alice Example alice@example.com
C: Cc: theboss@example.com
C: Date: Tue, 15 January 2008 16:02:43 -0500
C: Subject: Test message
C: 
C: Hello Alice.
C: This is a test message with 5 header fields and 4 lines in the message body.
C: Your friend,
C: Bob
C: .
S: 250 Ok: queued as 12345
C: QUIT
S: 221 Bye
{The server closes the connection}

Introduction

Sender’s/recipient's emails

Body of emailCommands

25

mailto:bob@example.com
mailto:alice@example.com


Try SMTP for yourself
It’s one of the simplest protocols
[fabianb@santos ~]$ nslookup -type=MX cs.northwestern.edu
Server: 129.105.5.98
Address: 129.105.5.98#53
cs.northwestern.edu mail exchanger = 0 barra.eecs.northwestern.edu.
$ telnet barra.eecs.northwestern.edu 25

helo santos.cs.northwestern.edu
250 barra.eecs.northwestern.edu Hello santos.cs.northwestern.edu [129.105.44.79], pleased to meet 
you
mail from: <fabianb@cs.northwestern.edu>
250 Sender <fabianb@cs.northwestern.edu> OK
rcpt to: <fabianb@cs.northwestern.edu>
250 Recipient <fabianb@cs.northwestern.edu> OK
DATA

354 Start mail input; end with <CRLF>.<CRLF>
this is a test
.
250 Ok: queued as 1519CBCA4C8
quit
Connection closed by foreign host.

Compared with HTTP …
• Both use persistent TCP connections
• But SMTP is mainly a push protocol
• Each message, including the body needs 

to be in 7b ASCII format
• SMTP puts all parts of a message, 

images and txt, in one message

26



Accessing email in the new millennium
Up until the early 1990s, you would login onto a server host and 
execute a mail reader on that host
– To check email on your laptop, you would need it on all the time

just so you can send queued email and receive email at any time …
Today’s mail access uses a client-server architecture
– Alicia’s UA uses SMPT to push her email to her mail server …

• That way her mail server can keep trying if Beto’s mail server were not available
– A different mail access protocol to transfer Beto’s emails to his laptop 

27

mail
server

mail
server

SMTPUser 
agent

User 
agent

POP3, 
IMAP or 

HTTPSMTP

Sender’s UA uses SMTP to 
push email to her own server

Alicia Beto



Mail Access Protocols
POP3 – Simple protocol (RFC 1939) with limited functionality
– Access over TCP in 3 phases

• Authorization – username/password exchange in clear text
• Transaction – Retrieve messages, mark for deletion, get stats; download-and-delete 

(not great if you have more than one machine) or download-and-keep mode
• Update – When quitting, carry on updates

IMAP – More complex (RFC 3501), an improvement over POP3
– Users can create folders in the server and move emails between them, 

search, get parts of a message (e.g., headers) if on a poor connection
Web-based e-mail – Starting with Hotmail in mid 1990s, all 
exchanges with the mail server over HTTP
– Beto to receive and Alicia to send (instead of SMTP)

28



Summary 
We looked at concepts and implementation aspects of network 
applications … 
Earlier lectures provide a vague definition of a protocol – the 
format and order of the messages exchanged between 
communication entities, and the actions they take on the 
transmission/reception of messages or some other event …
Our discussion made it a bit more concrete … 
But there’s more to go with DNS and CDNs …

29


