Transport Layer and UDP

TO do
O Transport Layer — The Basics
a The Simplest Transport Layer Protocol - UDP

Northwestern

Transport-Layer Service

» A transport-layer protocol provides for logical communication
between app processes running in different hosts
— From the app’s perspective, as if the nodes were directly connected

* Implemented at end hosts, not in routers

— Converts app-layer packets into

segments by

e Possible breaking messages
into smaller chunks

e Adding some headers

— Segments are given to the
network layer ...

Application | <2 Home network
g q Network

Network 5
Data link
Physical

Network

Data link

Data link

Physical

)

Network

Data link

Physical

Network

Physical
>

Data link

Enterprise network |

Physical

< B2

Application

Network

Data link

Physical

Transport and Network Layer

» Transport-layer protocols — logical communication
running in different hosts
» Network-layer ...
— Subtle but important difference
» Clearly, the services a transport-layer protocol can provide is

constrained by what the underlying network-layer service offers
— No delay or bandwidth guarantees from network? ...

» Constrained is not the same as completely determined ...
— E.g., Areliable transport on an unreliable network

Transport Layer in the Internet

* Internet transport-layer protocols - UDP and TCP

» What do they get from IP, the network-layer protocol?

— An unreliable, best-effort service
* i.e., best effort = no guaranteed segment delivery
e No guaranteed integrity of data in the segments

» What do they offer

— Extending host-to-host delivery to process-to-process —
transport-layer multiplexing/demultiplexing — TCP and UDP

— Integrity checking with error-detection fields in the header

—
B

— Reliable data transfer, using flow control, seq #, acks, timers

— Congestion control (for the general good) ensuring every L Only TCP
connection in a congested link gets an equal share of bw

Transport Layer in the Internet

* UDP - User Datagram Protocol
— Unreliable, connectionless service

— Extending IP service “between hosts” to “between processes” —
transport-layer multiplexing

— Basic error checking
— No setup costs, no transmission delays above IP

¢ TCP - Transmission Control Protocol
— Reliable, connection-oriented service
— Transport-layer multiplexing + basic error checking

— Besides API provides abstraction of a stream of bytes, hiding

* Message sizes, lost messages, duplication and ordering, flow control and
congestion avoidance

Multiplexing/Demultiplexing

» Multiple processes, one connection (let's imagine)
— How can you tell which process each segment belongs to?

» Transport layer in the receiving host 2
delivers data to a socket = =

Data Iinkl Data link

— Each socket has a unique identifier Physical [| ——~"">""| Physical

— Each segment has fields to identify the !K J !

receiving socket — a destination port number z
— demultiplexing

» On the other end, gather data chunks from different sockets,
encapsulate them into segments with header info, and pass
them to the network layer — multiplexing

Connectionless Multiplexing

* To create a UDP socket
clientSocket = socket (AP INET, SOCK DGRAM)

— Get back a socket # (between 1024 and 65535, currently not in use)

or we can associate it with a specific port # with bind
clientSocket.bind((’’, 19157)

* On the client side, let the transport layer assign a port #

» A UDP port is fully identified by a two-tuple consisting of a
destination IP address and a destination port #

— The source address acts as a return address

Server

Client

UDPServer.py and UDPClient.py

from socket import *

serverPort = 12000
serverSocket = socket(AF INET, SOCK DGRAM)

serverSocket.bind(('', serverPort))
print ("The server is ready to receive')
while True: ____— | Return address to be used ...
message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode() .upper() _— | Here for replies

serverSocket.sendto(modifiedMessage.encode(), clientAddress)

from socket import *

serverName = 'localhost'

serverPort = 12000

clientSocket = socket(AF_ INET, SOCK DGRAM)

message = input('Input lowercase sentence: ')
clientSocket.sendto(message.encode(), (serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print (“From Server:”, modifiedMessage.decode())
clientSocket.close()

Connection-oriented Multiplexing

» A TCP socket is identified by a four-tuple
<src IP, src port, dst IP, dst port>
— Demultiplexing happens based on the four values

» Server has a ‘welcoming socket’ to wait for connection-
establishment requests from clients

serverPort = 12000
serverSocket = socket(AF INET, SOCK_ STREAM)

serverSocket.bind(('', serverPort))

» When it receives a request, it creates a new socket for that client

while True:
connectionSocket, addr = serverSocket.accept()

TCPServer.py and TCPClient.py

1 *
from socket import ////// A welcoming socket to

serverPort = 12000

serverSocket = socket(AF INET, SOCK STREAM)
serverSocket.bind(('', serverPort))
serverSocket.listen(1)

el ag i rreren S e e elrerahreiy / Create a new socket for this client;

wait for connections

Server

while True: use IP and port of src, port of dst

connectionSocket, addr = serverSocket.accept() and its own IP to identify it
message = connectionSocket.recv(1024).decode()

modifiedMessage = message.upper ()
connectionSocket.send(modifiedMessage.encode())

connectionSocket.close()

from socket import *
serverName = “localhost / Create a socket and send a
serverPort = 12000 :)
clientSocket = socket(AF INET, SOCK STREAM) connection-establishment request
message = input('Input lowercase sentence: ')
clientSocket.connect((serverName, serverPort))
clientSocket.send(message.encode())
modifiedMessage = clientSocket.recv(1024)

print('From server: ', modifiedMessage.decode())
clientSocket.close() 10

Client

UDPClient.py and TCPClient.py

from socket import *

serverName = 'localhost'

serverPort = 12000

clientSocket = socket(AF_ INET, SOCK DGRAM)

message = input('Input lowercase sentence: ')
clientSocket.sendto(message.encode(), (serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print (“From Server:”, modifiedMessage.decode())
clientSocket.close()

UDP Client

from socket import *

serverName = 'localhost'

serverPort = 12000

clientSocket = socket(AF_ INET, SOCK STREAM)
message = input('Input lowercase sentence: ')
clientSocket.connect((serverName, serverPort))
clientSocket.send(message.encode())
modifiedMessage = clientSocket.recv(1024)

print('From server: ', modifiedMessage.decode())
clientSocket.close()

TCP Client

11

UDP Server

TCP Server

UDPServer.py and TCPServer.py

from socket import *

serverPort = 12000

serverSocket = socket(AF INET, SOCK DGRAM)

serverSocket.bind(('', serverPort))

print ("The server is ready to receive')

while True:
message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode() .upper()
serverSocket.sendto(modifiedMessage.encode(), clientAddress)

from socket import *

serverPort = 12000

serverSocket = socket(AF INET, SOCK STREAM)

serverSocket.bind(('', serverPort))

serverSocket.listen(1)

print ("The server is ready to receive')

while True:
connectionSocket, addr = serverSocket.accept()
message = connectionSocket.recv(1024).decode()
modifiedMessage = message.upper ()
connectionSocket.send(modifiedMessage.encode())
connectionSocket.close()

12

Demultiplexing — Two Clients Connected to a Web Server

Web client host A Per-connection
Web server host B HTTP process

4_/

\ 7 | Transport layer
demultiplexing

Web client host C

13

Connectionless Transport — UDP

» User Datagram Protocol [RFC 768] — As little as possible from a
transport-level protocol
— Nearly the same as IP
— Just allowing multiple applications on a host to share one network
— Plus some error checking

» Multiplexing/demultiplexing ...
— Takes application msgs, attaches src/dst port numbers for multiplexing
— Pass the resulting segment to the network layer
— No handshaking between src/dst — connectionless
— On arrival, use dst port to deliver the segment to the correct app

* One example application — DNS

14

Why Would You Want to Use UDP? Why not TCP?!

» Finer app-level control over what data is sent and when — UDP
just passes on whatever the app gives it; TCP has a congestion
control mechanism that throttle the sender, a potential problem
for real-time applications

* No connection establishment — TCP three-way handshake
introduces delay in setting a connection

* No connection state — TCP keeps connection state that includes
receive and send buffers, congestion control parameters and
sequence and ack number parameters — constrains scalability

» Small packet header overhead — TCP segment has 20B of
header in every segment, vs 8B in UDP

15

How do Processes Learn Each Others’ Ports?

» Client initiates the exchange so, just include that and the server
will learn the client’s port

» How does the client learn of the server’s port?

— A common approach — a well-known port, e.g., DNS in port 53
(in a Unix mach, look at /etc/services)

— Another option is a “port mapper”, with a well-known port answering
questions like ‘what port should | use to reach x?’

16

UDP Segment Structure

*» Not much needed, four fields 32 bits
each of two bytes A

» Source and destination ports as Source port # Dest. Port #
discussed Length Checksum

* Length — number of byes in header+data Application data
Needed since the size of data field (message)

may be different from one segment to
the next

» Checksum to check if the segment has been altered in transfer

17

Checksum is a simple way to detect data corruption

» Break the data into sequence of 16-bit integers

* Do the 1s complement of the sum
— Add the integers
— Wrap the carry-out bits to the least-significant position
— Finally, invert the result (O to 1, 1 to 0)

0110011001100000 | A 0110011001100000 L2 1011101110110101 [A*5
0101010101010101 | B 0101010101010101 LB 1000111100001100 [
1000111100001100 | € 1011101110110101 [A*B 1]0100101011000010 | A+B+C

18

Checksum is a simple way to detect data corruption

» Why do you need error detection here?
— Many link-layer protocols have it already
— Yeah, but not all

— And the error could be introduced when the segment is stored in a
router’'s memory

* An example of the end-to-end principle”

* Notice there's no “recovery” by checksum, just detection
— Discard the bad segment or pass it on with a warning

* J. Saltzer, D. Reed and D. Clark, End-to-End Arguments In System Design, ACM TOCS, 2(4), 1984
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf 19

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

* Providing comm. services to applications — the transport layer

» At least, multiplexing/demultiplexing for communication
processes — this + some checking = UDP

» A good basis for reliable data transfer and TCP ...

20

