
To do …

q Transport Layer – The Basics
q The Simplest Transport Layer Protocol - UDP

Transport Layer and UDP

Transport-Layer Service
A transport-layer protocol provides for logical communication
between app processes running in different hosts
– From the app’s perspective, as if the nodes were directly connected

Implemented at end hosts, not in routers
– Converts app-layer packets into

segments by
• Possible breaking messages

into smaller chunks
• Adding some headers

– Segments are given to the
network layer …

2

Home network

Enterprise network

Application
Transport
Network
Data link
Physical

Application
Transport
Network
Data link
Physical

Network
Data link
Physical

Network
Data link
Physical

Network
Data link
Physical

Network
Data link
Physical

Transport and Network Layer
Transport-layer protocols – logical communication between
processes running in different hosts
Network-layer … between hosts
– Subtle but important difference

Clearly, the services a transport-layer protocol can provide is
constrained by what the underlying network-layer service offers
– No delay or bandwidth guarantees from network? …

Constrained is not the same as completely determined …
– E.g., A reliable transport on an unreliable network

3

Transport Layer in the Internet
Internet transport-layer protocols – UDP and TCP
What do they get from IP, the network-layer protocol?
– An unreliable, best-effort service

• i.e., best effort = no guaranteed segment delivery
• No guaranteed integrity of data in the segments

What do they offer
– Extending host-to-host delivery to process-to-process –

transport-layer multiplexing/demultiplexing
– Integrity checking with error-detection fields in the header
– Reliable data transfer, using flow control, seq #, acks, timers
– Congestion control (for the general good) ensuring every

connection in a congested link gets an equal share of bw

4

TCP and UDP

Only TCP

Transport Layer in the Internet
UDP – User Datagram Protocol
– Unreliable, connectionless service
– Extending IP service “between hosts” to “between processes” –

transport-layer multiplexing
– Basic error checking
– No setup costs, no transmission delays above IP

TCP – Transmission Control Protocol
– Reliable, connection-oriented service
– Transport-layer multiplexing + basic error checking
– Besides API provides abstraction of a stream of bytes, hiding

• Message sizes, lost messages, duplication and ordering, flow control and
congestion avoidance

5

Multiplexing/Demultiplexing
Multiple processes, one connection (let’s imagine)
– How can you tell which process each segment belongs to?

Transport layer in the receiving host
delivers data to a socket
– Each socket has a unique identifier
– Each segment has fields to identify the

receiving socket – a destination port number
→ demultiplexing

On the other end, gather data chunks from different sockets,
encapsulate them into segments with header info, and pass
them to the network layer → multiplexing

6

Application
Transport
Network
Data link
Physical

Application
Transport
Network
Data link
Physical

P1 P2

Connectionless Multiplexing
To create a UDP socket
clientSocket = socket(AP_INET, SOCK_DGRAM)

– Get back a socket # (between 1024 and 65535, currently not in use)
or we can associate it with a specific port # with bind

clientSocket.bind((‘’, 19157)

On the client side, let the transport layer assign a port #
A UDP port is fully identified by a two-tuple consisting of a
destination IP address and a destination port #
– The source address acts as a return address

7

UDPServer.py and UDPClient.py

8

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print("The server is ready to receive")
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(), clientAddress)

from socket import *
serverName = 'localhost'
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_DGRAM)
message = input('Input lowercase sentence: ')
clientSocket.sendto(message.encode(), (serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print(“From Server:”, modifiedMessage.decode())
clientSocket.close()

Cl
ie

nt
Se

rv
er

Return address to be used …

Here for replies

Connection-oriented Multiplexing
A TCP socket is identified by a four-tuple
<src IP, src port, dst IP, dst port>
– Demultiplexing happens based on the four values

Server has a ‘welcoming socket’ to wait for connection-
establishment requests from clients

When it receives a request, it creates a new socket for that client

9

serverPort = 12000
serverSocket = socket(AF_INET, SOCK_STREAM)
serverSocket.bind(('', serverPort))

while True:
connectionSocket, addr = serverSocket.accept()

TCPServer.py and TCPClient.py

10

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_STREAM)
serverSocket.bind(('', serverPort))
serverSocket.listen(1)
print("The server is ready to receive")
while True:

connectionSocket, addr = serverSocket.accept()
message = connectionSocket.recv(1024).decode()
modifiedMessage = message.upper()
connectionSocket.send(modifiedMessage.encode())
connectionSocket.close()

from socket import *
serverName = 'localhost'
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
message = input('Input lowercase sentence: ')
clientSocket.connect((serverName, serverPort))
clientSocket.send(message.encode())
modifiedMessage = clientSocket.recv(1024)
print('From server: ', modifiedMessage.decode())
clientSocket.close()

Cl
ie

nt
Se

rv
er

A welcoming socket to
wait for connections

Create a socket and send a
connection-establishment request

Create a new socket for this client;
use IP and port of src, port of dst
and its own IP to identify it

UDPClient.py and TCPClient.py

11

from socket import *
serverName = 'localhost'
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_DGRAM)
message = input('Input lowercase sentence: ')
clientSocket.sendto(message.encode(), (serverName, serverPort))
modifiedMessage, serverAddress = clientSocket.recvfrom(2048)
print(“From Server:”, modifiedMessage.decode())
clientSocket.close()

UD
P

Cl
ie

nt

from socket import *
serverName = 'localhost'
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
message = input('Input lowercase sentence: ')
clientSocket.connect((serverName, serverPort))
clientSocket.send(message.encode())
modifiedMessage = clientSocket.recv(1024)
print('From server: ', modifiedMessage.decode())
clientSocket.close()

TC
P

Cl
ie

nt

UDPServer.py and TCPServer.py

12

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print("The server is ready to receive")
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(), clientAddress)

UD
P

Se
rv

er

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_STREAM)
serverSocket.bind(('', serverPort))
serverSocket.listen(1)
print("The server is ready to receive")
while True:

connectionSocket, addr = serverSocket.accept()
message = connectionSocket.recv(1024).decode()
modifiedMessage = message.upper()
connectionSocket.send(modifiedMessage.encode())
connectionSocket.close()

TC
P

Se
rv

er

Demultiplexing – Two Clients Connected to a Web Server

13

Src port:
7532

Dst port:
80

Src IP:
C

Dst IP:
B

…

Src port:
26145

Dst port:
80

Src IP:
C

Dst IP:
B

…

Src port:
26145

Dst port:
80

Src IP:
A

Dst IP:
B

…

Web client host A

Web client host C

Web server host B

Transport layer
demultiplexing

Per-connection
HTTP process

Connectionless Transport – UDP
User Datagram Protocol [RFC 768] – As little as possible from a
transport-level protocol
– Nearly the same as IP
– Just allowing multiple applications on a host to share one network
– Plus some error checking

Multiplexing/demultiplexing …
– Takes application msgs, attaches src/dst port numbers for multiplexing
– Pass the resulting segment to the network layer
– No handshaking between src/dst – connectionless
– On arrival, use dst port to deliver the segment to the correct app

One example application – DNS
14

Why Would You Want to Use UDP? Why not TCP?!
Finer app-level control over what data is sent and when – UDP
just passes on whatever the app gives it; TCP has a congestion
control mechanism that throttle the sender, a potential problem
for real-time applications
No connection establishment – TCP three-way handshake
introduces delay in setting a connection
No connection state – TCP keeps connection state that includes
receive and send buffers, congestion control parameters and
sequence and ack number parameters → constrains scalability
Small packet header overhead – TCP segment has 20B of
header in every segment, vs 8B in UDP

15

How do Processes Learn Each Others’ Ports?
Client initiates the exchange so, just include that and the server
will learn the client’s port
How does the client learn of the server’s port?
– A common approach – a well-known port, e.g., DNS in port 53

(in a Unix mach, look at /etc/services)
– Another option is a “port mapper”, with a well-known port answering

questions like ‘what port should I use to reach x?’

16

UDP Segment Structure
Not much needed, four fields
each of two bytes
Source and destination ports as
discussed
Length – number of byes in header+data
Needed since the size of data field
may be different from one segment to
the next
Checksum to check if the segment has been altered in transfer

17

Source port # Dest. Port #

Length Checksum

Application data
(message)

32 bits

Checksum is a simple way to detect data corruption
Break the data into sequence of 16-bit integers
Do the 1s complement of the sum
– Add the integers
– Wrap the carry-out bits to the least-significant position
– Finally, invert the result (0 to 1, 1 to 0)

0110011001100000
0101010101010101
1000111100001100

0110011001100000
0101010101010101
1011101110110101

1011101110110101
1000111100001100
01001010110000101

A

B

C

A

B

A+B

A+B

C

A+B+C

1011010100111101

18

Checksum is a simple way to detect data corruption
Why do you need error detection here?
– Many link-layer protocols have it already
– Yeah, but not all
– And the error could be introduced when the segment is stored in a

router’s memory
An example of the end-to-end principle*

Notice there’s no “recovery” by checksum, just detection
– Discard the bad segment or pass it on with a warning

19
* J. Saltzer, D. Reed and D. Clark, End-to-End Arguments In System Design, ACM TOCS, 2(4), 1984
http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

Recap
Providing comm. services to applications – the transport layer
At least, multiplexing/demultiplexing for communication
processes – this + some checking = UDP
A good basis for reliable data transfer and TCP …

20

