
To do …

q A reliable transport, piece by piece
q ACKs, timers, retransmissions and sequence numbers

Principles of Reliable Transport

Reliable Data Transfer
What do you get from a reliable data transfer
– Nothing corrupted, nothing lost and all in order

A framework for discussion

2

Application
layer

Transport
layer

Network
layer

Sending
process

Sending
process

Reliable channel

Provided service

Unreliable
channel

Reliable data
transfer protocol

(sending side)

Reliable data
transfer protocol
(receiving side)

rdt_send()

rdt_rcv()udt_send()

deliver_data()

Service implementation

data

packet

Trivial, RDT Over a Perfectly Reliable Channel
A finite state machine (FSM) definition

3

No bit corruption

No loss

In order

Wait for
call from

above

rdt_send(data)

packet=make_pkt(data)
udt_send(packet)

Initial state

Event causing the
transition

Action taken

Sending side

Wait for
call from

bellow

rdt_rcv(packet)

extract(packet, data)
deliver_data(data)

Receiving side

Gets the data from
the upper layer via
rdt_send, makes a
packet and sends it

RDT Over a Channel with Bit Errors
Assume there is no loss for now …
First, how do people handle a call over a noisy connection?
– “OK / yeah / …” – Positive ACK
– ”Sorry? / Please repeat that / …” – Negative ACK
– Automatic Repeat reQuest (ARQ) protocols

Three things you need in an ARQ
– Error detection – requires some extra bits, besides the data itself
– Receiver feedback – no other way for the sender to know; ACKs and

NACKs are examples of this feedback
– Retransmission

4

RDT Over a Channel with Bit Errors – rdt2.0

5

Bit corruption

No loss

In order

Wait for
call from

above

Sending side
rdt_send(data)

packet=make_pkt(data)
udt_send(packet)

Wait for
ACK or
NACK

rdt_rcv(rcvpacket) && isACK(rcvpkt)

Λ

rdt_rcv(rcvpacket) &&
isNACK(rcvpkt)

udt_send(sndpkt)

When in ‘Wait for ACK or NACK’,
sender can’t get any more data from
the upper layers - Stop-and-wait

Receiving side

Wait for
call from

bellow

rdt_rcv(rcvpacket) &&
corrupt(rcvpkt)

sndpkt=make_pkt(NACK)
udt_send(sndpkt)

rdt_rcv(rcvpacket) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt=make_pkt(ACK)
udt_send(sndpkt)

rdt2.0 has a fatal flaw!
What happens if ACKs/NAKs are corrupted?
– Sender doesn’t know what happened at the receiver!
– How about retransmit if received a garbled ACK/NACK?

Handling duplicates
– Sender retransmits current packet if ACK/NAK corrupted
– Sender adds sequence number to each packet
– Receiver discards (doesn’t deliver up) duplicate packet

With a “stop-and-wait” protocol, one bit seq # is enough
– To tell between a resend and a new packet
– NACKs/ACKs don’t need seq # since there’s no loss (so, it must be

about the most recently sent packet
rdt2.1

Duplicates?

Rdt2.1 sender

7

Wait for
call 0 from

above

rdt_send(data)

sndpkt=make_pkt(0, data, checksum)
udt_send(sndpkt)

Wait for
ACK or
NACK 0

rdt_rcv(rcvpacket) &&
(corrupt(rcvpkt)
||isNACK(rcvpkt))

udt_send(sndpkt)

Wait for
call 1 from

above

Wait for
ACK or
NACK 1

rdt_rcv(rcvpacket)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Λ

rdt_send(data)

sndpkt=make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpacket)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Λ

rdt_rcv(rcvpacket) &&
(corrupt(rcvpkt)
||isNACK(rcvpkt))

udt_send(sndpkt)

Rdt2.1 receiver

8

Wait for
0 from
bellow

Wait for
1 from
bellow

rdt_rcv(rcvpacket) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

extract(rcvpkt, data)
deliver_data(data)
sndpkt = make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpacket) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt, data)
deliver_data(data)
sndpkt = make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpacket) && corrupt(rcvpkt)

sndpkt = make_pkt(NAK,checksum)
udt_send(sndpkt)rdt_rcv(rcvpacket) && corrupt(rcvpkt)

sndpkt = make_pkt(NAK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpacket) && notcorrupt(rcvpkt)
&& has_seq0(rcvpkt)

sndpkt = make_pkt(ACK,checksum)
udt_send(sndpkt)

rdt_rcv(rcvpacket) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

sndpkt = make_pkt(ACK,checksum)
udt_send(sndpkt)

NACKs and ACKs
rdt2.1 uses positive and negative acknowledgments
– When a corrupted packet arrives, send a NACK
– When an out of order packet (previous one) arrives, send an ACK

Replace NACKs with an ACK for last correctly received packet
– “This is the last thing I understood of what you said” → receiver did not

correctly receive the packet following the one being ACKed twice
– Of course now the ACK needs to include the seq # of the packet ACKed

9

rdt2.2

rdt2.2: sender, receiver fragments

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

Wait
for 0
from

below

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seq1(rcvpkt))

udt_send(sndpkt)

receiver FSM
fragment

Wait
for call
0 from
above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait
for

ACK 0

sender FSM
fragment

L

Note we are not
creating a new sndpkt

10

RDT Over a Lossy Channel with Bit Error
Two additional concerns to address
– Detecting packet loss
– What to do in the event of packet loss

Who needs to detect loss? We make the sender responsible
How? Time-out, either the message got lost or the ACK did
– Retransmit anyway

But how long? > RTT + processing time … hard to estimate
– And you want to recover ASAP → Duplicate packets

Because pckt seq # alternate between 0/1 –
alternating-bit protocol

11

Bit corruption

Loss

In order

rdt3.0

rdt3.0 in Operation

12

send pkt0

rcv ACK0

rcv pkt0

send ACK0

Sender Receiver

Operation with no loss

pkt0

ACK0

send pkt1

rcv pkt1

pkt1

rcv ACK1

send ACK1ACK1

send pkt0

rcv pkt0

pkt0

send ACK0ACK0

Sender Receiver

Lost packet

send pkt0

rcv pkt0

pkt0

rcv ACK0

send ACK0ACK0

rcv ACK1

send ACK1ACK1

send pkt0

rcv pkt0

pkt0

send ACK0ACK0

send pkt1 pkt1
✘

rcv pkt1

resend pkt1 pkt1
timeout

rdt3.0 in Operation

13

send pkt0

rcv ACK0

rcv pkt0

send ACK0

Sender Receiver

Premature timeout

pkt0

ACK0

send pkt1

rcv pkt1

pkt1

rcv ACK1

send ACK1ACK1

send pkt1

rcv pkt1

pkt1

send ACK1ACK1
send pkt0

rcv pkt0

pkt0

rcv ACK0

send ACK0ACK0

timeout

Sender Receiver

Lost ACK

send pkt0

rcv pkt0

pkt0

rcv ACK0

send ACK0ACK0

rcv ACK1

send ACK1ACK1

send pkt0

rcv pkt0

pkt0

send ACK0ACK0

rcv pkt1

resend pkt1 pkt1

timeout

send pkt1 pkt1
rcv pkt1

✘
send ACK1ACK1

Stop-and-wait
rdt3.0 – functionally correct but stop-and-wait … poor utilization
– Utilization – fraction of time the sender is busy sending bits

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK
(t = RTT/2+L/R)

Assuming a tiny ACK pkt so we can
ignore transmission time

ACK arrives, send next
packet, t = RTT + L / R

14

Stop-and-wait
Consider two host on two sides of the US (~30 msec RTT)
– Transmission rate R (e.g., 1 Gbps) and packet size L (e.g., 1KB)

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK
(t = RTT/2+L/R)

Assuming a tiny ACK pkt so we can
ignore transmission time

ACK arrives, send next
packet, t = RTT + L / R

dtrans=	L/R	=	
8,000	bits/packet	/	109 bits/sec	=
8	microsec

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝐿/𝑅

𝑅𝑇𝑇 + 𝐿/𝑅 = 0.00027t	=	30.008	msec
15

16

Pipelining hides latency to increase throughput
Pipelining – Allows multiple “in-flight” pkts, not yet ACKed

Window size is the max number of in-flight packets
Finite to limit data buffering needed at each end, and load
placed on the network

Data packets

ACKs

Data packets

ACKs

17

Pipelining increases link utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
3𝐿/𝑅

𝑅𝑇𝑇 + 𝐿/𝑅 = 0.00081

18

How to do pipelining
Packet buffering and acknowledgement become more complex
– Range of sequence numbers to accommodate for this

• How to do it depends on how we deal with lost, corrupted or long delayed packets
– Buffering to hold on packets sent but not yet ACKed

Need flow/congestion control to prevent overwhelming the
receiver/network
Two basic approaches to pipelined error recovery
– Go-Back-N
– Selective repeat

19

Pipelining option #1: Go Back N
Window size is N, sender can have up to N pkts in flight
– The range of possible pkts transmitted but not yet ack’ed
– As it runs, the window “slides” forward – sliding-window protocol

Receiver sends cumulative ACK: “Got everything up to seq. # x”
– Discard out-of-order pkt, re-send ACK of last in-order seq. #
– If sender does not get an ACK after some timeout interval,

resend all pkts starting from pkt after the last ACK’ed pkt
If the sender timeout expires several times w/o receiving any
ACK, give up on the connection

20

GBN: sender extended FSM

wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++

} else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

L

”Refuse” could be done differently,
such as using a synchronization
variable that would allow the upper-
layer call when the window is not full

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

L

21

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with
highest in-order seq #
– may generate duplicate ACKs
– need only remember expected seq#
– out-of-order pkt:

• discard (don’t buffer): no receiver buffering! (Why?!)
• re-ACK pkt with highest in-order seq #

wait

udt_send(sndpkt)

default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt = make_pkt(0,ACK,chksum)

L

In all other cases, discard it and
re-send the most recent ACK

BTW, how would you
implement this?

22

GBN in action

23

send pkt0

rcv ACK0

rcv pkt0
send ACK0

Sender Receiver
Window size is 4

send pkt1

rcv pkt1
send ACK1

send pkt2

✘
send pkt3

rcv pkt3,discard
send ACK1

rcv ACK1

send pkt4
rcv pk4,discard
send ACK1send pkt5
rcv pk5,discard
send ACK1

send pkt2

send pkt3

send pkt4

send pkt5

pkt2 timeout

rcv pkt2,deliver
send ACK2
rcv pk3,deliver
send ACK3

...

Because of window size, sends 0 to 3 and wait
(wait)

With every ACK (one less packet in the pipe), the
sliding window can move forward and sender
can send another packet

Out of order packets are discarded

Go Back N pros / cons
Pros: Easy to implement:
– Sender just stores # of last ACK and maintains a timer
– Receiver just stores expected seq number and immediately passes new

in-order packets to listening app
Cons: A single lost or delayed pkt invalidates all in-flight data
– When the window size and the bandwidth*delay product are large,

there can be a lot of packets in the pipeline
– Receiver can throw out a lot of good data, just because it’s “early”

• I.e. lacks receiver buffering
– Lose an entire window of data due to one “bad” packet

24

Pipelining option #2: Selective Repeat
Only re-send an pkt whose transmission or ACK was lost
Receiver individually ACKs all received pkts
Out-of-order pkts are stored by receiver and later reassembled
Sender keeps one timer per each in-flight packet, and will re-
send any pkts not ACK’ed before timeout
Window of size N limits the max range of un-ACK’ed pkts
– Receiver drops received pkts with seq # outside the window
– This prevents pkts from old connection from getting inserted into new

connection’s data stream

25

Selective repeat

pkt n in [rcvbase, rcvbase+N-1]

§ send ACK(n)
§ out-of-order: buffer
§ in-order: deliver (also deliver

buffered, in-order pkts, i.e.,
consecutively numbered),
advance window to next not-
yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]

§ ACK(n)
otherwise:
§ ignore

sender receiver
data from above:
§ if next available seq # in

window, send pkt
§ else, return up or buffered
timeout(n):
§ resend pkt n, restart timer
ACK(n) in [sendbase,sendbase+N]:

§ mark pkt n as received
§ if n smallest unACKed pkt,

advance window base to
next unACKed seq # Note it re-ack, rather than

ignore already received pkts

26

Selective Repeat windows

Sender window advances
when lowest packet is

ACK’ed.

Receiver window advances
when lowest packet is

received.

27

Sender view of
sequence numbers

Receiver view of
sequence numbers

Selective repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
send ack3rcv ack0, send pkt4

rcv ack1, send pkt5

pkt 2 timeout
send pkt2

X
loss

receive pkt4, buffer,
send ack4

receive pkt5, buffer,
send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

record ack3 arrived

record ack4 arrived
record ack5 arrived

28

Assumes that 2-bit seq number and a window of size 3

Solution: window length must be < half the max seq number

Careful with sequence number reuse

29

0 1 2 3 0 1 2 pkt0

0 1 2 3 0 1 2 pkt1

0 1 2 3 0 1 2 pkt2

0 1 2 3 0 1 2 pkt0

0 1 2 3 0 1 2 ACK0

0 1 2 3 0 1 2 ACK1

0 1 2 3 0 1 2 ACK2
✘
✘
✘

Timeout, re-
send pkt0

Receive pkt with
seq number 0

sender receiver

0 1 2 3 0 1 2 pkt0

0 1 2 3 0 1 2 pkt1

0 1 2 3 0 1 2 pkt2

0 1 2 3 0 1 2 ACK0

0 1 2 3 0 1 2 ACK1

0 1 2 3 0 1 2 ACK2

✘

Receive pkt with
seq number 0

0 1 2 3 0 1 2

pkt3

pkt0

0 1 2 3 0 1 2

0 1 2 3 0 1 2

sender receiver

New pkt or a retransmit?

Recap

30

The underlying principles of reliable transfer → ready for TCP
A summary of mechanisms and their use

Mechanism Use
Checksum Detect bit errors in a transmitted packet
Timer To timeout/retransmit a packet; since it’s a guess, need to handle

duplicates
Seq number To detect gaps in sequences of packets sent and detect duplicates as well
ACK For the receiver to tell the sender it got it, may be individual or cumulative
NACK For the receiver to tell the sender that a pkt wasn’t received correctly
Window,
pipelining

To improve utilization over stop-and-wait mode; the window may be set
based on the receiver’s ability to receive and buffer msgs, the level of
congestion in the network or both

