CDN and P2P

- To do ...
 - CDNs
 - **D** P2P
 - □ Hybrid CDN+P2P

Network trends and application need

- Some clear trends
 - Growing number of networks
 - Faster networks
 - Growing availability and demand for content
- For applications, higher demand on performance and reliability
 - Small degradation are expensive in lost revenue
 - \$2.8m/hour in 2009
 - ... damage reputation
 - ... reduced productivity

Content delivery

The common answer

- Replicate content around the world, closer to users
- Bring users to nearby content, "nearby" in a network sense
- Challenges
 - How to replicate content
 - Where to replicate it
 - How to choose among known replicas
 - How to direct clients toward a replica

Content Distribution Network

- Proactive content replication
 - Content provider (e.g., NY Times) contracts with a CDN
- CDN replicates the content
 - On many servers spread throughout the Internet
- Updating the replicas
 - Updates pushed to replicas when the content changes

Server selection policy

- Live server
 - For availability
- Lowest load
 - Balancing load across servers
- Closest
 - Nearest geographically, or in round-trip time
- Best performance
 - Throughput, latency, ...
- Cheapest bandwidth, electricity, pollution, ...

Requires continuous monitoring of liveness, load, and performance

Server selection mechanism

- Application
 - URL redirection (HTTP 3xx)

- Advantages
 - Fine-grain control
 - Selection based on client IP address
- Disadvantages
 - Extra round-trips for TCP connection to server
 - Overhead on the server

Server selection mechanism

- Routing
 - Anycast routing

- Advantages
 - No extra round trips
 - Route to nearby server
- Disadvantages
 - Does not consider network or server load
 - Different packets may go to different servers
 - Used only for simple requestresponse apps

Server selection mechanism

- Naming
 - DNS-based server selection

- Advantages
 - Avoid TCP set-up delay
 - DNS caching reduces overhead
 - Relatively fine control
- Disadvantage
 - Based on IP address of local
 DNS server / recursive resolver
 - "Hidden load" effect
 - DNS TTL limits adaptation

Akamai as an example

Distributed servers

- Servers: ~170,000
- Networks: ~1,300
- Countries: ~102

Client requests

Many customers

Apple, BBC, IBM, MTV,

NASA, NBC, NFL, ...

- Hundreds of billions/day
- 15-30% of all web traffic

Components of a delivery network (Akamai)

Akamai replicas

Akamai replicas

Akamai replicas

Akamai replicas

Mapping System

- Equivalence classes of IP addresses
 - IP addresses experiencing similar performance
 - Quantify how well they connect to each other
- Collect and combine measurements
 - Ping, traceroute, BGP routes, server logs
 - Network latency, loss, and connectivity
- Map each IP class to a preferred server cluster
 - Based on performance, cluster health, etc.
 - Updated roughly every minute
- Map client request to a server in the cluster
 - Load balancer selects a specific server (e.g., to maximize cache hit rate)

Overlay networks – virtual networks

- Different applications with a wide range of needs ...
- Provide a service tailored to a class of applications
 - P2P file sharing, content distribution (CDNs)
- Support efficient operation in a given network environment
 Wireless ad-hoc networks, delay tolerant networking
- Add extra features such as multicast or secure communication
 - IPv6, (overlay) multicast, resilience (RON), mobility, security (VPN)

Overlay networks

- A logical network built on top of a physical one
 - Overlay links are tunnels through the underlying network
- Nodes are often end hosts
 - Intermediate nodes contribute storage, CPU, just forward traffic for more reliable or faster communication
- Who controls the cooperating nodes?
 - The one who providing the service (e.g., Akamai)
 - A distributed collection of end users (e.g., P2P)
- The price to pay
 - Additional level of indirection
 - Opacity of the underlying network
 - Complexity of the network services

Peer-to-peer – A common overlays

- User computers talking directly (instead of via a central server)
 - Enabled by tech improvements in computing and networking
- A distributed architecture
 - No centralized control
 - Nodes are symmetric in function
- The promise
 - Reliability from many unreliable nodes no central point of failure, multiple replicas, geographic distribution
 - High capacity through parallelism
 - Automatic configuration
 - Shifting control/power from organizations to users

Three generations of P2P

- (0) Many predecessors DNS, Usenet, Grapevine, ...
- (1) Unstructured and centralized
 - Napster Sharing music; shutdown July 2001
- (2) Unstructured and decentralized
 - Gnutella, Kazaa, ... Peers are all equal and can connect to anyone
 - Super-peers to scale search and handle churn
- (3) Structured and decentralized
 - E.g. DHTs like Chord, Tapestry, Pastry, Kademlia and CAN
- Key common need placing and finding resources on an overlay

Skype – an example overlay

Peer-to-peer VoIP

- Developed by Kazaa in 2003, acquired by Microsoft in 2011 (US\$ 8.5B)
- 40% of the International call market share (2014), 300M monthly users,
 4.5M daily
- Notes on design*
 - Super-peer structure (super-peer selected based on availability, reachability, bandwidth, etc)
 - Users login through a well-known server, but connect to the network and others through super-peers
 - TCP for control, TCP or UDP for voice

Another classical example – BitTorrent

- A cooperative, popular service for content distribution
- Basic operation
 - User clicks on download link, gets torrent file with content hash and IP address of tracker
 - User's BT app talks to the tracker, gets a list of other users with downloaded file
 - User's BT app talks to one or more users with the file, and
 - tell tracker it has a copy too
 - User's BT app servers the file to others for a while

The problem with trackers

- Hard to distribute files (need a tracker)
- Tracker may not be reliable
- Single point of failure
 - Easy target of copyright owners
 - Or people offended by content
- Could you use a distributed <key,value> store for this?
 - All apps cooperatively implementing it
 - Key is the torrent file content hash ("infohash"), value is the torrent IP
 - BT find other apps able to serve that content by asking around for <key,value> pairs
 - And adds itself as another one willing to help after it has it
 - ... but how do you find the <key, value> pair(s) you want?

Distributed Hash Tables (DHTs)

- Goal quick retrieval, storage of <key, value> pairs
- General approach
 - Map node IDs to a (large) circular space
 - Map keys to the same circular space
 - <key, value> pairs are stored in nodes with IDs that are close for some notion of closeness
- A simple interface
 - put(key, value) | get(key) → value
- Weak consistency likely that get(k) see put(k), no guarantees
- Two examples
 - Chord one of the original DHTs [Stoica. 2001]
 - Kademlia A popular second system [Maymounkov, Mazières, 2002]

Chord

Basics

- IDs space, m-bit long 128-160 bits such as SHA-1
- Identifiers are ordered in an identifier circle modulo 2^m (range [0, 2^m-1])
- Key k "belongs" to nearest node node with the smallest id $\ge k$, the successor of k (closeness is "clockwise distance")

An id circle with m = 3Three nodes: 0, 1 and 3

- To resolve k to address of succ(k)
 - Nodes keep track of their successor on the circle
 - Simplest way go around the circle until we get k's successor

Chord

- Short-cuts to speeds things up (not for correctness)
- Nodes keep a finger table of at most m entries
 - If FT_p denotes the finger table of p, $FT_p[i] = succ(p+2^{i-1})$
 - i.e., the *i*-th entry points to the first node succeeding p by at least 2^{i-1} ($1 \le i < m$)
 - FT entry contains Chord ID, IP and port
 - The first entry is *p* immediate *successor* on the circle
 - Shortcuts' distance increases exponentially with index
- To look up key k, node p will forward request to node q with index j in p's FT where

 $q = FT_p[j] \le k < FT_p[j+1]$

Resolving in Chord – example

Some details

- How much faster with FT?
 - Log(n) hops one of the fingers takes you ~half-way to target
 - Is that good? 10 hops for 1m nodes
 - 50ms per hop, 0.5sec so, not bad
- How does a node gets correct tables?
 - Starting from scratch, add new nodes
 - Use DHT lookups to populate new nodes' finger tables
 - For a new node m
 - Send lookups for its own key, this yields m.successor
 - Gets successor's FT

CDNs or P2P?

- P2P systems
 - Cheap, easy to scale
 - Security issues, potential low-quality, hard to find unpopular content, difficult accounting
- Infrastructure-based systems
 - Expensive to setup and scale
 - Akamai 137,000 servers in 87 countries (probably out of date)
 - Can provide predictable QoS and reliable accounting

CDNs or P2P? Both

- Hybrid? Peer-assisted CDNs
 - Deliver content by peers, with operation coordinated (and backstopped) by dedicated infrastructure
 - Akamai's NetSession Operating commercially since 2010
 - True global coverage 239 countries in 2013

- Need for revenue, unlike P2P
- No transparency users are aware of them
- Heterogeneity
- NATs and firewalls
- Impact to ISP change of traffic patterns

Tweet 0 I Like 0	in Share 8+1 0	Thread Tools -
2013-07-18, 14:14		#1
IreneLinda □ 5 Star Lounger □ Join Date: Sep 2002 Location: Naples, Florida, USA Posts: 1,145 Thanks: 28 Thanket 2 Times in 2 Posts	Keep or Remove Akamai NetSession Interface?	
	Some advice, please. Cleaning up my startup folder via MSConfig, i Interface program. Apparently it speeds up v things, but do I need it and do I need it in my gave me so many conflicting opinions that I h most: here!	ideo viewing and such good y Startup folder? Googling this

NetSession's approach and some answers

- Download starts from edge servers
 - Standard HTTPS
- Ask control plane for nearby peers
- If anyone's around, download from them
 - ~Swarm small pieces exchanged
 - No need for tit-for-tat
 - Edge servers generate unique secure IDs for content and hashes for validation
 - HTTPS connection is used for configuration and reporting

Recap

- New applications with new demands on the underlying network
- Architectural changes are, at best, difficult
- Overlays as a path to deployment and an experimental testbed
 - Deploying narrow fixes?
 - No demands on underlying network (to ensure deployment)
- From grassroots efforts and research labs to products
- Many open hard issues security, churn, ...

