
To do …

q Overview and structure
q Sequence numbers and retransmission 
q Flow control
q 3-way handshake and closing a connection

Transport Layer – TCP 



TCP overview
Connection-oriented – handshaking (exchange of control msgs) 
to initialize sender and receiver state before data exchange 
– A logical, end-to-end connection, not a TDM or FDM one

Point-to-point – one sender, one receiver (e.g., no multicasting)
Full-duplex – Bi-directional data flow in same connection
Reliable, in-order byte stream – no “message boundaries”
App data is placed on the buffer (set aside during the 
handshake), and sent in pieces as segments
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TCP overview
App data is placed on the buffer, sent in pieces as segments
– Piece at a time as given by Maximum Segment Size (MSS)
– MSS based on largest link-layer frame or MTU – Maximum Transmission 

Unit  - Typical MTU is 1,500B, minus TCP headers 40B → MSS of 1,460B
– Segments are buffered on the other end, and the app reads the stream 

of data from there
Pipelined – TCP congestion and flow control set window size
Flow controlled – Sender will not overwhelm receiver
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TCP segment structure
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Data

Internet
checksum

(as in UDP)

ACK: ACK #
valid

For reliable transfer

For flow control
# bytes rcvr willing
to accept

Header length in 
32-bit words

URG: urgent data 
(generally not used)

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)



TCP sequence and ACK numbers
Before looking at how they are used …
Sequence numbers
– Byte stream “number” of first byte in 

segment’s data
Acknowledgements
– Seq # of next byte expected from other side,

cumulative ACK
How receiver handles out-of-order 
segments?
– TCP spec doesn’t say, up to implementor

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent 
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not 
yet sent

not 
usable

window size
N Sender

sequence
number 
space 

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender
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TCP sequence numbers, ACKs

User
types
‘C’

host ACKs
receipt 

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Both ends start with randomly chosen seq # – 42 
and 79 (to avoid mistaken a segment from an 
older connection for a valid segment for this one)

First segment includes the one-byte ’C’

“I got everything up to byte 42, waiting from 43 
onwards”; the message also echoes the ‘C’

The ACK is piggybacked on the echo message

No data, just an ACK from the client
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TCP round trip time, timeout
As RDT, TCP uses timeout/retransmit to recover from loss
How to set TCP timeout value?
– Longer than RTT … but RTT varies

• Too short: premature timeout, unnecessary retransmissions
• Too long: slow reaction to segment loss

How to estimate RTT?
– Keep a SampleRTT, time from a segment transmission until ACK receipt

• So one SampleRTT approximately every RTT
• Ignore retransmissions, i.e., don’t compute it for a retransmitted segment
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TCP round trip time, timeout
How to estimate RTT? ...
– Quite a bit of fluctuation due to congestions and load at end systems
– To smooth it out, average several recent measurements using an

exponential weighted moving average (EWMA)
• Influence of past sample decreases exponentially fast typical value: ⍺= 0.125

EstimatedRTT = (1- a)*EstimatedRTT + 
a*SampleRTT

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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TCP round trip time, timeout
To capture variability

– Note that DevRTT is a EWMA of the difference between EstimatedRTT
and SampledRTT

Timeout interval: EstimatedRTT plus “safety margin”
– Large variation in EstimatedRTT → larger safety margin
– Small variation in EstimatedRTT → smaller safety margin
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DevRTT = (1-b)*DevRTT + b*|SampleRTT-EstimatedRTT|
(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

Safety margin
Initially, TimeoutInterval = 1 sec



TCP reliable data transfer
Remember, IP gives you no guarantees on 
– Data delivery | Order | Integrity of the data

TCP creates rdt service on top of IP’s unreliable service
– Pipelined segments
– Cumulative acks
– Single retransmission timer 

Let’s start with a simplified version of TCP reliable data transfer
– Ignore duplicate acks
– Ignore flow control, congestion control
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TCP sender (simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. # = NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data) 
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment         
with smallest seq. #

start timer

timeout

if (y > SendBase) { 
SendBase = y 
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer 

} 

ACK received, with ACK field value y 

wait
for 

event

One timer, instead of one per 
transmitted, not-yet-ACK 
segment

Expiration time is 
TimeoutInterval we just 
calculated

Three major events …
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TCP retransmission scenarios – Lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100
X

ACK=100

tim
eo

ut

A sends a segment with seq # 92 
and 8B of data to B

ACK never makes it back, timeout 
and A retransmits
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TCP retransmission scenarios – Premature timeout

Host BHost A

Seq=92, 8B of data

ACK=100

ACK=120

tim
eo

ut Seq=100, 20B of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Seq=92,  8B of data

A sends two segments back to back 
with seq # 92 and 100

It retransmit the first segment 
because of the timeout

If the second segment’s ACK arrives before the 
new timeout, the segment will not be 
retransmitted
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TCP retransmission scenarios – Cumulative ACK

Host BHost A

Seq=92, 8B of data

X ACK=100

Seq=120,  15B of data

tim
eo

ut

Seq=100, 20B of data

ACK=120

A sends two segments back to back 
with seq # 92 and 100

First ACK is lost but second ACK arrives before 
the timeout; A knows that B received everything 
up through byte 119, no need to resend
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Timeout re-setting
Upon a timeout, double the timeout interval instead of using 
EstimatedRTT and DevRTT
– So timeout grows exponentially with retransmission
– When timer is restarted by the other events (data from above, ACK 

received), TimeoutInterval is set based on recent estimation of RTT
– A form of congestion control, as delays and so timeouts are likely 

caused by congestion

15

data received from application above

timeoutACK received, with ACK field value y 

wait
for 

event

…

……

Our simplified TCP sender



TCP fast retransmit
Timeout period can be relatively long
– Longer to resend, increased end-to-end delay

Sender can detect lost segments via duplicate ACKs
– Sender often sends many segments back-to-back
– if segment is lost, there will likely be many duplicate ACKs

To see that, look at what the receiver does with ACKs
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TCP ACK generation [RFC 1122, RFC 2581]
There are no NACKs, the duplicate ACK indicates the gap

Event at receiver TCP receiver action
Arrival of in-order segment with expected seq #; 
all data up to expected seq # already ACKed

Delayed ACK; wait up to 500ms for next segment, 
if no next segment, send ACK

Arrival of in-order segment with expected seq #; 
one other segment has ACK pending

Immediately send single cumulative ACK, ACKing
both in-order segments

Arrival of out-of-order segment higher-than-
expected seq #; gap detected

Immediately send duplicate ACK indicating seq # 
of next expected byte

Arrival of segment that partially or completely fills 
gap

Immediate send ACK, provided that segment 
starts at lower end of gap
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TCP fast retransmit
Timeout period can be relatively long
– Longer to resend, increased end-to-end delay

Sender can detect lost segments via duplicate ACKs
– Sender often sends many segments back-to-back
– if segment is lost, there will likely be many duplicate ACKs
– Wait for three duplicate ACKs …

Event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently any not yet ACK’ed segments) start time

} else { /* a duplicate ACK for already ACKed segment */
Increment number of duplicate ACKs received
if (number of duplicate ACKs for y == 3) 

resend segment with seq number y /* fast retransmit */
}   

Fast retransmit: retransmit the 
missing segment before the 
segment’s timer expires
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TCP fast retransmit

Host BHost A

Seq=92, 8B of data

ACK=100

tim
eo

ut

X
Seq=100, 20B of data

Seq=100, 20B of data

ACK=100

ACK=100

ACK=100

Fast retransmit after sender 
receipt of triple duplicate ACK
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TCP … Go-Back-N or Selective Repeat

Plus some new features
– Guidelines for setting timeout interval, based on observations
– Delayed ACKs
– Triple duplicate ACK triggers a retransmit.
– Connection setup with 3-way handshake, and teardown
– Window size changes to implement flow & congestion control

Selective Repeat
Re-send just one segment on timeout
Receiver may save out-of-order 
segments for later reassembly

Go-Back-N
Only one timer is kept, but →
Send cumulative ACKs, but →
Duplicate ACK for early segment
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TCP flow control
Bot sides of a TCP connection set aside a receive buffer
– Arrived data goes there until it is read
– If the app doesn’t read fast enough, sender can overflow the buffer

Flow control – a speed-matching service
– Receiver controls sender, so sender won’t overflow receiver’s buffer by 

transmitting too much, too fast
– Like congestion control but different motivation
– Of course, nothing like it in UDP

How? The idea
– Sender keeps a receive window (rwnd) variable, an approximation of 

free buffer space in the receiver (full-duplex, so both ends have one)
– Sender makes sure to have less than rwnd sent and un-acknowledge
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TCP flow control
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A B

RcvBuffer: Size of buffer 
LastByteRead:Number of the last 
byte read by the app from the buffer 

LastByteRcvd: Number of the last 
byte arrived and placed in the buffer

LastByteRcvd – LastByteRead ≦ RcvBuffer
Rwnd = RcvBuffer – [LastByteRcvd – LastByteRead]
Host B tells A of rwnd in every segment it sends back

LastByteSent
LastByteAcked

LastByteSent – LastByteAcked: 
the amount of unack’ed data sent by A

RcvBuffer

rwnd TCP data in buffer

One more detail, what happens after B runs out of space, advertises it and has nothing to send
to A? A will never know when B empties the buffer  …

Host A keeps LastByteAcked – LastByteAcked ≦ rwnd

TCP specs require A to keep sending one data byte segments when B’s rwnd is zero



TCP connection management
How a TCP connection is established and torn down
– Can add to perceived latency
– Can be exploited for attacks

Steps
1. Client-side sends a special SYN segment, no app data, SYN-bit set, 

includes initial sequence number (client_isn) in seq #
2. Server receives SYN, allocates TCP buffers and variables to the 

connection, and sends a SYNACK connection-granted segment. Here 
SYN bit is set, ACK field has client_isn+1, server chooses its own 
initial seq number (server_isn) and puts it in the seq # field

3. On receiving SYNACK, client allocate buffers and variables, and sends 
an ACK segment (putting server_isn+1 in ACK) that could 
include app data (SYN bit is zero)
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TCP 3-way handshake: FSM

Socket clientSocket =   
newSocket("hostname","port number");

SYN(seq=x)

L

Socket connectionSocket = 
welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for 
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

SYN
rcvd

listen

SYN
sent

ESTAB

closed
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TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data received ACK(y) 

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN
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Would 2-way handshake have worked?
Will 2-way handshake always work in network?
– variable delays
– retransmitted messages (e.g., req_conn(x)) 

due to message loss
– message reordering
– can’t “see” other side
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2-way handshake

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client 
terminates

server
forgets x

connection 
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)



TCP: closing a connection
Client, server each close their side of connection
– Send TCP segment with FIN bit = 1

Respond to received FIN with ACK
– On receiving FIN, ACK can be combined with own FIN

Simultaneous FIN exchanges can be handled
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Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB
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Recap
TCP implements a combination of GBN and Selective Repeat
ACK timeout can be appropriately set with EWMA of recent RTT
Connection setup requires a 3-way handshake
Flow control is implemented with explicit Receive Window
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