Transport Layer — TCP

To0 A0 ---
a Overview and structure
0 Sequence numbers and retransmission
a Flow control
a 3-way handshake and closing a connection

Northwestern



» Connection-oriented — handshaking (exchange of control msgs)
to initialize sender and receiver state before data exchange
— A logical, end-to-end connection, not a TDM or FDM one

» Point-to-point — one sender, one receiver (e.g., no multicasting)
* Full-duplex — Bi-directional data flow in same connection

* Reliable, in-order byte stream — no “message boundaries”

» App data is placed on the buffer (set aside during the
handshake), and sent in pieces as segments



» App data is placed on the buffer, sent in pieces as segments
— Piece at a time as given by Maximum Segment Size (MSS)

— MSS based on largest link-layer frame or MTU — Maximum Transmission
Unit - Typical MTU is 1,500B, minus TCP headers 40B — MSS of 1,460B

— Segments are buffered on the other end, and the app reads the stream
of data from there

* Pipelined — TCP congestion and flow control set window size
* Flow controlled — Sender will not overwhelm receiver

Process

Process
writes data reads data
TCP TCP
send receive
buffer buffer
3




TCP segment structure

y . URG: urgent data For reliable transfer
eader length in
32-bit words (generally not used) /
\ L TCP Header
oﬁfﬁt‘s\ Octet 0 N 1 / / 2 3
Octet Bit 0 1 2 3 4 5 6\\1 8 9 10 11 12 13 14 1;//16 17 18/19 20 21 22 23 24 25 26 27 28 29 30 31
ACK: ACK # 0 \o Sour}:‘e\eort / / Destination port
valid \\4\%\ \ éequence number /
8 64 ‘\ \ \ Acknowledgment number (if'ACK set)
N\ ¢ Etula P r|s|F
12 96 Data offset R::szrvsd I; W/ C|R C|Ss|s|Y I Window Size
R E| G| K H|T| N|N \
16 128 / Checksum / / \ Urgent pointer (if URG set)
20 160 / Optioy(if:{ata offset > 7 Padded at the end witr)?" bytes if necessary.)
/ / / / Data
Internet/ PSH: push data now RST SYN, FIN: \ For flow control
checksum (generally not used) connection estab # bytes rcvr willing
(as in UDP) (setup, teardown to accept
commands)



TCP sequence and ACK numbers

» Before looking at how they are used ...

outgoing segment from sender

» Sequence numbers _” e
— Byte stream “number” of first byte in i i
Segment's data checksum urg pointer
window size
» Acknowledgements VT Sender
. Sequence
— Seq # of next byte expected from other side, ‘""l"" "“"""l"| number
cumulative ACK | | | | space
*» How receiver handles out-of-order sent sent, not- usable not
ACKed yet ACKed but not usable
segments? (fm | yetsent
9 .
— TCP spec doesn’t say, up to implementor '“Com"’:i Se%me”t#to sender
source po est port
sequence number

l acknowledgement number
rwnd

checksum urg pointer




TCP sequence numbers, ACKs

Both ends start with randomly chosen seq # — 42

and 79 (to avoid mistaken a segment from an

older connection for a valid segment for this one)

First segment includes the one-byte 'C’

“| got everything up to byte 42, waiting from 43
onwards”; the message also echoes the ‘'C’

The ACK is piggybacked on the echo message

No data, just an ACK from the client

Host A Host B
User \(/’
types \ :
C | Seq=42,ACK=79,data= ‘C’
| s host ACKs
‘receipt of
| d/ C’, eChoes
| Seq=79, ACK=43, data= ‘C’ | ( ~
host ACKs / iback C
receipt |
of echoed \ |
'C Seq=43, ACK=80 i

simple telnet scenario



TCP round trip time, timeout

» As RDT, TCP uses timeout/retransmit to recover from loss

» How to set TCP timeout value?
— Longer than RTT ... but RTT varies

® Too short: premature timeout, unnecessary retransmissions
* Too long: slow reaction to segment loss

*» How to estimate RTT?

— Keep a SampleRTT, time from a segment transmission until ACK receipt
® So one SampleRTT approximately every RTT
® Ignore retransmissions, i.e., don't compute it for a retransmitted segment



TCP round trip time, timeout

*» How to estimate RTT? ...

— Quite a bit of fluctuation due to congestions and load at end systems
— To smooth it out, average several recent measurements using an
exponential weighted moving average (EWMA)

e Influence of past sample decreases exponentially fast typical value: a= 0.125

350

EstimatedRTT = (1- o) *EstimatedRTT +
a*SampleRTT 200

N
a
o

RTT (milliseconds)
N
=]
o

150

100

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—e— SampleRTT —&— Estimated RTT




TCP round trip time, timeout

» To capture variability

DevRTT = (l—B)*DeVRTT + B*ISampleRTT—EstimatedRTTl
(typically, P = 0.25)

— Note that DevRTT is a EWMA of the difference between EstimatedRTT
and SampledRTT
» Timeout interval: EstimatedRTT plus “safety margin”

— Large variation in EstimatedRTT — larger safety margin
— Small variation in EstimatedRTT — smaller safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

L J
I

Safety margin

Initially, TimeoutInterval = 1 sec



TCP reliable data transfer

*» Remember, IP gives you no guarantees on
— Data delivery | Order | Integrity of the data

» TCP creates rdt service on top of IP’s unreliable service
— Pipelined segments

— Cumulative acks
— Single retransmission timer

» Let’'s start with a simplified version of TCP reliable data transfer
— Ignore duplicate acks
— Ignore flow control, congestion control

10



TCP sender (simplified)

Three major events ...
data received from application above

create segment, seq. # = NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)

A _ Ty start timer
?exéseqNum = |r;lstla|SeqNum wait One timer, instead of one per
endBase = InitialSegNum for -
cvant transmitted, not-yet-ACK
segment
timeout

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

retransmit not-yet-acked segment
with smallest seq. #

tart ti
/* SendBase-1: last cumulatively ACKed byte */ Srart Hmet Expiration time is
if (there are currently not-yet-acked segments) : :
start timer TimeoutInterval we just
else stop timer calculated

}
11



TCP retransmission scenarios — Lost ACK

Host A Host B
%‘ W
— |
T - Seq=92, 8 bytes Ofdai"i A sends a segment with seq # 92
=8 —~ and 8B of data to B
o | ACK=100
s ) ‘
l — | ACK never makes it back, timeout
. 5eq=92, 8 bytes of data .
— and A retransmits
/:
| ACK=100

1
v

12



TCP retransmission scenarios — Premature timeout

Host A Host B

"

SendBase=92 - | —
Seq=92, 8B of data

5  Seq=100, 20B of data

o :

£ /< |

l i ACK=100 / i
’ ACK=120

SendBase=100 Seq=92, 8B of data

SendBase=120 /
SendBase=120 ¢/

\

ACK=120

1
v

A sends two segments back to back
with seq # 92 and 100

It retransmit the first segment
because of the timeout

If the second segment’'s ACK arrives before the

new timeout, the segment will not be
retransmitted



TCP retransmission scenarios — Cumulative ACK

Host A Host B

e —— S—
—~— |

T ~—_5eq=92, 8B of dati\g A sends two segments back to back
- Seq=100, 20B of data -, with seq # 92 and 100

o T~

=3 ACK=100__~

e X

= ACK=120

J < , First ACK is lost but second ACK arrives before
. Seq=120, 15Bofdata | the timeout; A knows that B received everything
: T up through byte 119, no need to resend

14



Timeout re-setting

» Upon a timeout, double the timeout interval instead of using
EstimatedRTT and DevRTT

— So timeout grows exponentially with retransmission

— When timer is restarted by the other events (data from above, ACK
received), TimeoutInterval is set based on recent estimation of RTT

— A form of congestion control, as delays and so timeouts are likely
caused by congestion

data received from application above

o

ACK received, with ACK field value y timeout

Our simplitied TCP sender

15



TCP fast retransmit

» Timeout period can be relatively long
— Longer to resend, increased end-to-end delay

» Sender can detect lost segments via duplicate ACKs
— Sender often sends many segments back-to-back

— if segment is lost, there will likely be many duplicate ACKs

To see that, look at what the receiver does with ACKs

16



TCP ACK generation [RFC 1122, RFC 2581]

» There are no NACKSs, the duplicate ACK indicates the gap

Event at receiver TCP receiver action

Arrival of in-order segment with expected seq #;
all data up to expected seq # already ACKed

Arrival of in-order segment with expected seq #;
one other segment has ACK pending

Delayed ACK; wait up to 500ms for next segment,
if no next segment, send ACK

Immediately send single cumulative ACK, ACKing
both in-order segments

Arrival of out-of-order segment higher-than-
expected seq #; gap detected

Immediately send duplicate ACK indicating seq #
of next expected byte

Arrival of segment that partially or completely fills
gap

Immediate send ACK, provided that segment
starts at lower end of gap

17



TCP fast retransmit

» Timeout period can be relatively long
— Longer to resend, increased end-to-end delay

» Sender can detect lost segments via duplicate ACKs
— Sender often sends many segments back-to-back

— if segment is lost, there will likely be many duplicate ACKs
— Wait for three duplicate ACKs ...

Fast retransmit: retransmit the

Event: ACK received, with ACK field value of y nnsswm;segrnentljeﬁjmathe
if (y > SendBase) { segment’s timer expires
SendBase = y
if (there are currently any not yet ACK’ed segments) start time
} else { /* a duplicate ACK for already ACKed segment */
Increment number of duplicate ACKs received
if (number of duplicate ACKs for y == 3)
resend segment with seq number y /* fast retransmit */

18



TCP fast retransmit

A Host B

—t

Hos

-

¥ \ Seq= 92 8B of data

. Seq= 100, 20B of data :
X \ ACK=100
ACK=100
- ACK=100

i ACK=100

I

timeout

Fast retransmit after sender

- receipt of triple duplicate ACK
Seq=100, 20B of data

19



TCP ... Go-Back-N or Selective Repeat

Go-Back-N Selective Repeat

e Only one timer is kept, but — o Re-send just one segment on timeout
e Send cumulative ACKs, but — » Receiver may save out-of-order

o Duplicate ACK for early segment segments for later reassembly

* Plus some new features

— Guidelines for setting timeout interval, based on observations
— Delayed ACKs

— Triple duplicate ACK triggers a retransmit.
— Connection setup with 3-way handshake, and teardown
— Window size changes to implement flow & congestion control

20



TCP flow control

» Bot sides of a TCP connection set aside a receive buffer
— Arrived data goes there until it is read
— If the app doesn’t read fast enough, sender can overflow the buffer

* Flow control — a speed-matching service

— Receiver controls sender, so sender won't overflow receiver’s buffer by
transmitting too much, too fast

— Like congestion control but different motivation
— Of course, nothing like it in UDP

» How? The idea

— Sender keeps a receive window (rwnd) variable, an approximation of
free buffer space in the receiver (full-duplex, so both ends have one)

— Sender makes sure to have less than rwnd sent and un-acknowledge

21



TCP flow control

-\ R TCP data in buffer

= RcvBuffer: Size of buffer
- cvBuffer
y LastByteRead:Number of the last
B ‘ byte read by the app from the buffer
- LastByteRcvd: Number of the last
byte arrived and placed in the buffer

LastByteSent ’ A
Y V

LastByteAcked

LastByteSent - LastByteAcked:
the amount of unack’ed data sent by A

LastByteRcvd - LastByteRead = RcvBuffer
Rwnd = RcvBuffer - [LastByteRcvd - LastByteRead]
Host B tells A of rwnd in every segment it sends back

Host A keeps LastByteAcked - LastByteAcked = rwnd

One more detail, what happens after B runs out of space, advertises it and has nothing to send
to A? A will never know when B empties the buffer ...

TCP specs require A to keep sending one data byte segments when B's rwnd is zero

22



TCP connection management

*» How a TCP connection is established and torn down
— Can add to perceived latency
— Can be exploited for attacks
» Steps
1. Client-side sends a special SYN segment, no app data, SYN-bit set,

QO

zvs includes initial sequence number (client isn)inseq#

§ 2. Server receives SYN, allocates TCP buffers and variables to the

B connection, and sends a SYNACK connection-granted segment. Here
§ SYN bit is set, ACK field has client isn+1, server chooses its own
0 initial seq number (server isn) and putsitin the seq # field

< 3. On receiving SYNACK, client allocate buffers and variables, and sends
<

an ACK segment (putting server isn+1 in ACK) that could
include app data (SYN bit is zero)

23



TCP 3-way handshake: FSM

closed

Socket connectionSocket =
welcomeSocket.accept();

A Socket clientSocket =
newSocket("hostname","port number");

SYN(x)
SYN(seg=x)

SYNACK(seg=y,ACKnum=x+1)
create new socket for
communication back to client l

v

‘ SYNACK(seg=y,ACKnum=x+1)
ACK(ACKnum=y+1)

v
4

ACK(ACKnum=y+1)
A

24



TCP 3-way handshake

client state q/ ﬂ server state
LISTEN e LISTEN
choose init seq num, x

send TCP SYN msg [~

SYNSENT SYNbit=1, Seq=x
choose init seq num, y

send TCP SYNACK SYN RCVD

/ msg, acking SYN

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x)
indicates server is live;
ESTAB send ACK for SYNACK;

this segment may contain | ACKbit=1, ACKnum=y+1

client-to-server data
T~ received ACK(y)
indicates client is live

/\

v

ESTAB

25



Would 2-way handshake have worked?

» Will 2-way handshake always work in network?
— variable delays

— retransmitted messages (e.g., req_conn(x)) g n
due to message | choose x | .
g © 1055 ' reg_conn(x) _ !
' _» ESTAB
— message reordering :

. 1
retransmit ! acc_conn(x)

— can't “see” other side req_connix) |
ESTAB @

2-way handshake o

]
1 1
1 1
1 \ 1
1 1
' connection :
client” = x completes ~ Tserver
e '

choose x = ! terminates forgets x
' reg_conn(x) | :
i : )“o ESTAB |
'+ acc_conn(x)
ESTAB e~ B ! b ESTAB

half open connection!
(no client!)

26



TCP: closing a connection

» Client, server each close their side of connection
— Send TCP segment with FIN bit = 1

* Respond to received FIN with ACK
— On receiving FIN, ACK can be combined with own FIN

» Simultaneous FIN exchanges can be handled

27



Closing a TCP connection
n server state
ESTAB

FINbit=1, seq=x\’

client state

ESTAB

g

clientSocket.close ()

FIN'WAIT_1  can no longer

1
1
send but can | v
receive data | . — CLOSE_WAIT
 ACKbit=1; ACKnum=x+1 can still
FIN_WAIT 2 wait for sglrgfer L/' send data
LAST ACK

FINbit=1, segq=y
can no longer

TIMED_WAIT _
send data

timed wait
for 2*max
segment lifetime

CLOSED J,

\.
ACKbit=1; ACKnum=y+1
\

|
|
v

CLOSED

I
I
I
1
1
I
I
|
|
1
I
|
|
1
1
|
|
|
\4

28



» TCP implements a combination of GBN and Selective Repeat

» ACK timeout can be appropriately set with EWMA of recent RTT
» Connection setup requires a 3-way handshake

* Flow control is implemented with explicit Receive Window

29



