
To do …

q Overview and structure
q Sequence numbers and retransmission
q Flow control
q 3-way handshake and closing a connection

Transport Layer – TCP

TCP overview
Connection-oriented – handshaking (exchange of control msgs)
to initialize sender and receiver state before data exchange
– A logical, end-to-end connection, not a TDM or FDM one

Point-to-point – one sender, one receiver (e.g., no multicasting)
Full-duplex – Bi-directional data flow in same connection
Reliable, in-order byte stream – no “message boundaries”
App data is placed on the buffer (set aside during the
handshake), and sent in pieces as segments

2

TCP overview
App data is placed on the buffer, sent in pieces as segments
– Piece at a time as given by Maximum Segment Size (MSS)
– MSS based on largest link-layer frame or MTU – Maximum Transmission

Unit - Typical MTU is 1,500B, minus TCP headers 40B → MSS of 1,460B
– Segments are buffered on the other end, and the app reads the stream

of data from there
Pipelined – TCP congestion and flow control set window size
Flow controlled – Sender will not overwhelm receiver

3

Process
writes data

TCP
send
buffer

Process
reads data

TCP
receive
buffer

segment segment
Socket Socket

TCP segment structure

4

Data

Internet
checksum

(as in UDP)

ACK: ACK #
valid

For reliable transfer

For flow control
bytes rcvr willing
to accept

Header length in
32-bit words

URG: urgent data
(generally not used)

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

TCP sequence and ACK numbers
Before looking at how they are used …
Sequence numbers
– Byte stream “number” of first byte in

segment’s data
Acknowledgements
– Seq # of next byte expected from other side,

cumulative ACK
How receiver handles out-of-order
segments?
– TCP spec doesn’t say, up to implementor

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

incoming segment to sender

A

sent
ACKed

sent, not-
yet ACKed
(“in-
flight”)

usable
but not
yet sent

not
usable

window size
N Sender

sequence
number
space

source port # dest port #

sequence number
acknowledgement number

checksum
rwnd

urg pointer

outgoing segment from sender

5

TCP sequence numbers, ACKs

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Both ends start with randomly chosen seq # – 42
and 79 (to avoid mistaken a segment from an
older connection for a valid segment for this one)

First segment includes the one-byte ’C’

“I got everything up to byte 42, waiting from 43
onwards”; the message also echoes the ‘C’

The ACK is piggybacked on the echo message

No data, just an ACK from the client

6

TCP round trip time, timeout
As RDT, TCP uses timeout/retransmit to recover from loss
How to set TCP timeout value?
– Longer than RTT … but RTT varies

• Too short: premature timeout, unnecessary retransmissions
• Too long: slow reaction to segment loss

How to estimate RTT?
– Keep a SampleRTT, time from a segment transmission until ACK receipt

• So one SampleRTT approximately every RTT
• Ignore retransmissions, i.e., don’t compute it for a retransmitted segment

7

TCP round trip time, timeout
How to estimate RTT? ...
– Quite a bit of fluctuation due to congestions and load at end systems
– To smooth it out, average several recent measurements using an

exponential weighted moving average (EWMA)
• Influence of past sample decreases exponentially fast typical value: ⍺= 0.125

EstimatedRTT = (1- a)*EstimatedRTT +
a*SampleRTT

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T (

mi
llis

ec
on

ds
)

SampleRTT Estimated RTT

8

TCP round trip time, timeout
To capture variability

– Note that DevRTT is a EWMA of the difference between EstimatedRTT
and SampledRTT

Timeout interval: EstimatedRTT plus “safety margin”
– Large variation in EstimatedRTT → larger safety margin
– Small variation in EstimatedRTT → smaller safety margin

9

DevRTT = (1-b)*DevRTT + b*|SampleRTT-EstimatedRTT|
(typically, b = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

Safety margin
Initially, TimeoutInterval = 1 sec

TCP reliable data transfer
Remember, IP gives you no guarantees on
– Data delivery | Order | Integrity of the data

TCP creates rdt service on top of IP’s unreliable service
– Pipelined segments
– Cumulative acks
– Single retransmission timer

Let’s start with a simplified version of TCP reliable data transfer
– Ignore duplicate acks
– Ignore flow control, congestion control

10

TCP sender (simplified)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

L

create segment, seq. # = NextSeqNum
pass segment to IP (i.e., “send”)
NextSeqNum = NextSeqNum + length(data)
if (timer currently not running)

start timer

data received from application above

retransmit not-yet-acked segment
with smallest seq. #

start timer

timeout

if (y > SendBase) {
SendBase = y
/* SendBase–1: last cumulatively ACKed byte */
if (there are currently not-yet-acked segments)

start timer
else stop timer

}

ACK received, with ACK field value y

wait
for

event

One timer, instead of one per
transmitted, not-yet-ACK
segment

Expiration time is
TimeoutInterval we just
calculated

Three major events …

11

TCP retransmission scenarios – Lost ACK

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100
X

ACK=100

tim
eo

ut

A sends a segment with seq # 92
and 8B of data to B

ACK never makes it back, timeout
and A retransmits

12

TCP retransmission scenarios – Premature timeout

Host BHost A

Seq=92, 8B of data

ACK=100

ACK=120

tim
eo

ut Seq=100, 20B of data

ACK=120

SendBase=100

SendBase=120

SendBase=120

SendBase=92

Seq=92, 8B of data

A sends two segments back to back
with seq # 92 and 100

It retransmit the first segment
because of the timeout

If the second segment’s ACK arrives before the
new timeout, the segment will not be
retransmitted

13

TCP retransmission scenarios – Cumulative ACK

Host BHost A

Seq=92, 8B of data

X ACK=100

Seq=120, 15B of data

tim
eo

ut

Seq=100, 20B of data

ACK=120

A sends two segments back to back
with seq # 92 and 100

First ACK is lost but second ACK arrives before
the timeout; A knows that B received everything
up through byte 119, no need to resend

14

Timeout re-setting
Upon a timeout, double the timeout interval instead of using
EstimatedRTT and DevRTT
– So timeout grows exponentially with retransmission
– When timer is restarted by the other events (data from above, ACK

received), TimeoutInterval is set based on recent estimation of RTT
– A form of congestion control, as delays and so timeouts are likely

caused by congestion

15

data received from application above

timeoutACK received, with ACK field value y

wait
for

event

…

……

Our simplified TCP sender

TCP fast retransmit
Timeout period can be relatively long
– Longer to resend, increased end-to-end delay

Sender can detect lost segments via duplicate ACKs
– Sender often sends many segments back-to-back
– if segment is lost, there will likely be many duplicate ACKs

To see that, look at what the receiver does with ACKs

16

TCP ACK generation [RFC 1122, RFC 2581]
There are no NACKs, the duplicate ACK indicates the gap

Event at receiver TCP receiver action
Arrival of in-order segment with expected seq #;
all data up to expected seq # already ACKed

Delayed ACK; wait up to 500ms for next segment,
if no next segment, send ACK

Arrival of in-order segment with expected seq #;
one other segment has ACK pending

Immediately send single cumulative ACK, ACKing
both in-order segments

Arrival of out-of-order segment higher-than-
expected seq #; gap detected

Immediately send duplicate ACK indicating seq #
of next expected byte

Arrival of segment that partially or completely fills
gap

Immediate send ACK, provided that segment
starts at lower end of gap

17

TCP fast retransmit
Timeout period can be relatively long
– Longer to resend, increased end-to-end delay

Sender can detect lost segments via duplicate ACKs
– Sender often sends many segments back-to-back
– if segment is lost, there will likely be many duplicate ACKs
– Wait for three duplicate ACKs …

Event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently any not yet ACK’ed segments) start time

} else { /* a duplicate ACK for already ACKed segment */
Increment number of duplicate ACKs received
if (number of duplicate ACKs for y == 3)

resend segment with seq number y /* fast retransmit */
}

Fast retransmit: retransmit the
missing segment before the
segment’s timer expires

18

TCP fast retransmit

Host BHost A

Seq=92, 8B of data

ACK=100

tim
eo

ut

X
Seq=100, 20B of data

Seq=100, 20B of data

ACK=100

ACK=100

ACK=100

Fast retransmit after sender
receipt of triple duplicate ACK

19

TCP … Go-Back-N or Selective Repeat

Plus some new features
– Guidelines for setting timeout interval, based on observations
– Delayed ACKs
– Triple duplicate ACK triggers a retransmit.
– Connection setup with 3-way handshake, and teardown
– Window size changes to implement flow & congestion control

Selective Repeat
Re-send just one segment on timeout
Receiver may save out-of-order
segments for later reassembly

Go-Back-N
Only one timer is kept, but →
Send cumulative ACKs, but →
Duplicate ACK for early segment

20

TCP flow control
Bot sides of a TCP connection set aside a receive buffer
– Arrived data goes there until it is read
– If the app doesn’t read fast enough, sender can overflow the buffer

Flow control – a speed-matching service
– Receiver controls sender, so sender won’t overflow receiver’s buffer by

transmitting too much, too fast
– Like congestion control but different motivation
– Of course, nothing like it in UDP

How? The idea
– Sender keeps a receive window (rwnd) variable, an approximation of

free buffer space in the receiver (full-duplex, so both ends have one)
– Sender makes sure to have less than rwnd sent and un-acknowledge

21

TCP flow control

22

A B

RcvBuffer: Size of buffer
LastByteRead:Number of the last
byte read by the app from the buffer

LastByteRcvd: Number of the last
byte arrived and placed in the buffer

LastByteRcvd – LastByteRead ≦ RcvBuffer
Rwnd = RcvBuffer – [LastByteRcvd – LastByteRead]
Host B tells A of rwnd in every segment it sends back

LastByteSent
LastByteAcked

LastByteSent – LastByteAcked:
the amount of unack’ed data sent by A

RcvBuffer

rwnd TCP data in buffer

One more detail, what happens after B runs out of space, advertises it and has nothing to send
to A? A will never know when B empties the buffer …

Host A keeps LastByteAcked – LastByteAcked ≦ rwnd

TCP specs require A to keep sending one data byte segments when B’s rwnd is zero

TCP connection management
How a TCP connection is established and torn down
– Can add to perceived latency
– Can be exploited for attacks

Steps
1. Client-side sends a special SYN segment, no app data, SYN-bit set,

includes initial sequence number (client_isn) in seq #
2. Server receives SYN, allocates TCP buffers and variables to the

connection, and sends a SYNACK connection-granted segment. Here
SYN bit is set, ACK field has client_isn+1, server chooses its own
initial seq number (server_isn) and puts it in the seq # field

3. On receiving SYNACK, client allocate buffers and variables, and sends
an ACK segment (putting server_isn+1 in ACK) that could
include app data (SYN bit is zero)

23

A
 th

re
e-

w
ay

 h
an

ds
ha

ke

TCP 3-way handshake: FSM

Socket clientSocket =
newSocket("hostname","port number");

SYN(seq=x)

L

Socket connectionSocket =
welcomeSocket.accept();

SYN(x)

SYNACK(seq=y,ACKnum=x+1)
create new socket for
communication back to client

SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1)ACK(ACKnum=y+1)

L

SYN
rcvd

listen

SYN
sent

ESTAB

closed

24

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state
LISTEN

server state
LISTEN

25

Would 2-way handshake have worked?
Will 2-way handshake always work in network?
– variable delays
– retransmitted messages (e.g., req_conn(x))

due to message loss
– message reordering
– can’t “see” other side

26

2-way handshake

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

choose x
req_conn(x)

ESTAB

ESTAB

acc_conn(x)

TCP: closing a connection
Client, server each close their side of connection
– Send TCP segment with FIN bit = 1

Respond to received FIN with ACK
– On receiving FIN, ACK can be combined with own FIN

Simultaneous FIN exchanges can be handled

27

Closing a TCP connection

FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait
for 2*max

segment lifetime

CLOSED

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB

28

Recap
TCP implements a combination of GBN and Selective Repeat
ACK timeout can be appropriately set with EWMA of recent RTT
Connection setup requires a 3-way handshake
Flow control is implemented with explicit Receive Window

29

