Congestion Control

TO do
O Principles and basic approaches
a TCP congestion control

Northwestern

Congestion control

» Congestion is when the network is overloaded

— Router queues are full, so packets are dropped

— or length of queues leads to long queuing delays and timer to expire
» Dropped packets — inefficient and can compound the problem

— Congestion — Packet loss — Retransmission —
More congestion! — More loss! ...

» Goal: to prevent this negative feedback cycle

» Difficult to solve because

— Caused by many concurrent hosts at any of the hops in the path
— State of routers along path is unknown — only see end-to-end behavior

The problems with congestion

» Two hosts sharing a hop between between src and dest

While packets will get to the other end,
Ain 1 Original data Mout if sending at too high a rate (each >R/2)
packets will be queued adding to
end-to-end delay

R/2 -j

—
ML

Link capacity R

7\‘0Ut
delay

Assuming router has infinite capacity. T

The problems with congestion

Ain : original data
Ain: original data +

retransmitted data A
out

——
TR

Link capacity R

Now assume router has finite capacity

Src only send
when there’s room
in the buffer, A, = A,

Src only re-sends a
packet it knows it has R/3
been dropped (setting 4
the perfect timeout)

Src timeouts R/2
prematurely and re-

sends packet that have .3 wa
not been dropped (e.g.,

each packet is
forwarded twice)

The problems with congestion

Ain : original data
AN in: original data +
retransmitted data

Traffic arrival rate from A-C to R2 is < R,
" the capacity of the link from R1 to R2,
= | regardless of A,

i

If I, is very large for all connections,
including B-D, the arrival rate at R2 <<
= than that from A-C traffic

Link capafity R

So A-C traffic that gets through R2 gets
smaller as B-D traffic gets larger

R/2 4

=
R

}"out

So the transmission capacity we used in the

upstream links ends up being wasted! M

The problems with congestion — A summary

* Queueing will impact end-to-end latency

» Packet loss will trigger resend (ok) but you may resend packets
that have not been lost

* And as you drop packets down the path, the transmission
capacity used in the upstream links ends up being wasted

Approaches to congestion control

» Two broad approaches — does the network layer helps or not?

» End-to-end congestion control
— Network layer provides no explicit support for congestion control
— Even detection must be done on the end systems (e.g., TCP’s segment
loss or, more recently, increasing round-trip segment delay)
» Network-assisted congestion control

— Routers provide explicit feedback to sender and/or receiver

e A simple bit as in DEC DECnet or IBM SNA
* More details like max sending rate the router can support (ATM Auvailable Bit Rate)

— From router to the sender - like a “choke” packet saying it's congested

— Router marks a filed in a packet flowing through towards the receiver,
receiver then notifies sender

TCP congestion control

» End-to-end, each sender limits that rate at which sends traffic
into the network based on hints about congestion

— There are some variations using ECN (e.g., DCTCP for data centers)
» How does a sender limit its sending rate?
— Sender keeps track of its congestion window, cwnd

— LastByteSent - LastByteAcked < min(cwnd, rwnd)
(amount of unack’ed data)

— Sending rate ~ cwnd/RTT bytes/sec

» How does it perceive there's congestion?
— Lost packet, either a timeout or three duplicate ACKs

» What algorithm should it use to adjust sending rate?

TCP guiding principles for congestion

» Adjusting sending rate
— Lost segment implies congestion, decrease rate

— ACK means a delivered segment, increase rate
— Self-clocking — fast/slow arriving ACK, fast/slow growing cwnd

» Bandwidth probing

— Increase rate in response to ACKs until

e A loss occurs, decrease transmission rate

— And try again in cased it has changed
» TCP congestion control operates in three phases
— Slow start

— Congestion avoidance
— Fast recovery (recommended but not required)

TCP congestion control — Slow start

« Initially, net capacity is unknown, start with cwnd=1 MSS, so a sending
rate of MSS/RTT

* Increase by 1 MSS every time it gets an ACK, so doubling
sending rate every RTT — exponential growth

» When does it end?

— Loss indicated by timeout — ssthresh = cwnd/2
(slow start threshold) and cwnd = 1, try again

— If cwnd = ssthresh (previous congestion), avoid congestion by
slowing down increasing rate

— Loss indicated by 3 duplicate ACKs, make a fast retransmit
and move to fast recovery

10

TCP congestion control — Slow start

Initially, net capacity is Increase by 1 MSS every time
unknown, so it gets an ACK, so doubling
sending rate every RTT —
new ACK exponential growth
A cwnd = cwnd+MSS
cwnd = 1 MSS duplicate ACK dupACKcount = 0

ssthresh = 64 KB

dupACKcount++ transmit new segment(s),
dupACKcount = 0 P J

as allowed lf cwnd 2 ssthresh
cwnd > ssthresh (previous congestion),
move to Congestion

v

(/ Avoidance, risky
Loss indicated by timeout ACK increasing at the same
I u count ==
timeout — ssthresh = cwnd/2 P rate
ssthresh = cwnd/2 cwnd = 1 MSS ssth:jesh= cgvndh/Z ;
dupACKcount = 0 cwnd = ssthresh +
(S|OW start threShO|d) retransmit missing segment retransmit missing segment
and cwnd = 1,try
again Loss indicated by 3 duplicate

ACKs, make a fast retransmit
and move to Fast Recovery

11

TCP congestion control — Congestion avoidance

Serious issue, go
back to Slow Start

new ACK

cwnd = cwnd + MSS * (MSS/cwnd)

dupACKcount = 0

transmit new segment(s), as allowed m

-
<

congestion

Congestion

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

S

avoidance duplicate ACK

dupACKcount++

dupACKcount ==

ssthresh= cwnd/2

cwnd = ssthresh + 3
retransmit missing segment

Linear growth now to avoid

On loss by triple-duplicate
ACK, Fast Retransmit

12

TCP congestion control — Fast recovery

The network is delivering segments (that's how we get duplicates), no need

for drastic measures

If it doesn’t before timeout, a
more serious issue, Slow Start

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment

Eventually the packet arrives
(got ACK), so move to
Congestion Avoidance

New ACK

recovery

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

cwnd = ssthresh
dupACKcount = 0

13

TCP Tahoe, TCP Reno and Fast Recovery

» TCP Tahoe, earlier version, doesn’t include Fast Recovery
» TCP Reno does

3x Dup ACK
First 8 rounds, both \]t
take the same actions . \ e
% Reno cuts
S ~ 10—)
cwy cwnd in half
23 8__ss£flrgsb ___________
¢
Initial Slow Start M ssthresh
phase S< 44
o TCP Tahoe Tahoe treats it as a timeout
27 and sets cwnd to 1
0 T T T T T T T 1

[| [| | [
O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15
Transmission round

14

All congestion control

new ACK
cwnd = cwnd + MSS (MSS/cwnd)
N duplicate ACK dupACKcount = 0
N N . dupACKcount++ transmit new segment(s), as allowed
cwnd = 1 MSS Mo
ssthresh = 64 KB N cwnd > ssthresh
dupACKcount = 0 4 =
A
Con_geSt'O” duplicate ACK
avoidance
, dupACKcount++
timeout
ssthresh = cwnd/2
timeout timeout cwnd = 1 MSS
dupACKcount = 0
ssthresh = cwnd/2 ssthresh = cwnd/2 retransmit missing seament
cwnd = 1 MSS cwnd = 1 gseg
dupACKcount = 0 dupACKcount = 0

retransmit missing segment retransmit missing segment New ACK

cwnd = ssthresh

dupACKcount = 0 dupACKcount ==

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount ==

ssthresh= cwnd/2

cwnd = ssthresh + 3
retransmit missing segment

Fast
recovery

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

15

TCP congestion control overview

* Ignoring initial slow start period and assuming losses are
indicated by triple duplicate ACKs instead of timeouts
— Additive, linear increase of 1 MSS per RTT
— Multiplicative decrease, halving of cwnd sdditively increase window size .

— So, the avg throughput ~0.75 * Max ... until loss occurs (then cut window in half
since it halves when it reaches it J
(Max/2*RTT and Max/RTT)
» Ongoing work, can you
predict loss using RTT?
How do you work with

hlgh_bandWIdth or hlgh RTT AIMD saw tooth behavior:
paths? ... probing for bandwidth

cwnd: TCP sender
congestion window size
|

time

16

TCP fairness

» A congestion control algorithm is far if each connection gets

equal share of the link bandwidth

¢ Is TCP AIMD fair? An intuitive argument
— 2 TCP connections sharing a link, same MSS

and RTT, with data to send, no other connection

* In congestion avoidance, bandwidth
of both grows at same rate, moving
at ~45° angle up-right

* Assuming only TCP connections traverse
the bottleneck link, all have same RTT, ...

— Sessions with smaller RTT can grab
bandwidth faster, so get better throughput

N

=

Conn. 2 throughput

Bottleneck router
of capacity R

A
< o
%76 2
\\ 2}. % .\ /7
WD Y SN/
% <O
\© 7
e

\\in" Oops, go down
/ N
’ %

’ /
P 7 / Enough for both,
7/ e—<. increase

A
N

Conn. 1 throughput R 17

Nagle’s algorithm merges small packets

* An app may write a series of small message to a TCP stream
— E.g., write(“OK\n”); write(“READY\n”); write(“GO\n");

* A simple implementation of TCP would send segments for each,
with high overhead from the 40B of TCP packet header

— Merging small packets into one larger one would reduce network load
(40+3) + (40+6) + (40+3) — (40+12) : 132 — 52 bytes

» Wait until segment is full before sending, unless there are no un-
ACK’ed segments outstanding (eg., send first segment
immediately)

18

Interactive applications

» Interactive apps and bulk-transfer apps prefer different TCP behavior

» Socket options give applications some control of the underlying TCP:
— TCP_NODELAY socket option disables Nagle’s algorithm
— Every write — segment(s) being sent immediately (if allowed by window)

— Nagle's algorithm adds extra latency which may hurt performance of applications that
send small, time-sensitive data. (eg., GUI events)

» TCP_NOPUSH is even more aggressive than standard Nagle

— Wait until send buffer is full before sending segment(s)

— Also, don't set PSH bit (to maximize buffering on the receiver’s side as well)
» Usually the PSH bit will be set on the last segment in a write call

— PSH tells the receiving TCP implementation to alert the receiving process that that
data is ready

TCP Keepalive

* An idle TCP connection involves no data exchange

» Optionally, a TCP host may occasionally send an empty data
segment, called a keepalive message, just to test whether an
ACK will return

— Keepalive has SEQ # one less than expected, to trigger an ACK
response

— Low frequency, ~once per minute

» Disabled by default, only used in special situations
— SSH clients give the option to enable TCP keepalives
— This forces NAT routers to keep the port mapping alive

» Some application-level protocols have their own keepalive msgs

20

» Congestion control can mean higher latencies, lower throughput
and wasted effort

» TCP congestion control is done using a dynamic congestion
window, controlled by heuristics that operate in phases

— Slow start — exponential growth to find approximate network capacity

— Congestion avoidance — as you get closer ... linear growth, slowly trying
to increase throughput

— Fast recovery — If one packet is lost, resend and cut window in half

» Adapts to changing network conditions

21

