
To do …

q Principles and basic approaches
q TCP congestion control

Congestion Control

Congestion control
Congestion is when the network is overloaded
– Router queues are full, so packets are dropped
– or length of queues leads to long queuing delays and timer to expire

Dropped packets – inefficient and can compound the problem
– Congestion → Packet loss → Retransmission →

More congestion! → More loss! …
Goal: to prevent this negative feedback cycle
Difficult to solve because
– Caused by many concurrent hosts at any of the hops in the path
– State of routers along path is unknown – only see end-to-end behavior

2

The problems with congestion
Two hosts sharing a hop between between src and dest

3

While packets will get to the other end,
if sending at too high a rate (each >R/2)
packets will be queued adding to
end-to-end delay

lin : original data

Link capacity R

lout

R/2

R/2

lin

l o
ut

R/2lin

de
la

y

Assuming router has infinite capacity.

The problems with congestion

4

Now assume router has finite capacity

lin : original data

Link capacity R

lout

l’in : original data +
retransmitted data

Src only send
when there’s room
in the buffer, lin = l’in

Src only re-sends a
packet it knows it has
been dropped (setting
the perfect timeout)

R/2

R/2

l’in

l o
ut

R/2

R/2

l’in

l o
ut

R/3

Src timeouts
prematurely and re-
sends packet that have
not been dropped (e.g.,
each packet is
forwarded twice)

R/2

R/2

l’in

l o
ut

R/4

The problems with congestion

5

lin : original data

Link capacity R

lout

l’in : original data +
retransmitted data

Host A Host B

Host D Host C

R2

R1

If l’in is very large for all connections,
including B-D, the arrival rate at R2 <<
than that from A-C traffic

Traffic arrival rate from A-C to R2 is ≤ R,
the capacity of the link from R1 to R2,
regardless of lin

So A-C traffic that gets through R2 gets
smaller as B-D traffic gets larger

R/2

l o
ut

lin
’

So the transmission capacity we used in the
upstream links ends up being wasted!

The problems with congestion – A summary
Queueing will impact end-to-end latency
Packet loss will trigger resend (ok) but you may resend packets
that have not been lost
And as you drop packets down the path, the transmission
capacity used in the upstream links ends up being wasted

6

Approaches to congestion control
Two broad approaches – does the network layer helps or not?
End-to-end congestion control
– Network layer provides no explicit support for congestion control
– Even detection must be done on the end systems (e.g., TCP’s segment

loss or, more recently, increasing round-trip segment delay)
Network-assisted congestion control
– Routers provide explicit feedback to sender and/or receiver

• A simple bit as in DEC DECnet or IBM SNA
• More details like max sending rate the router can support (ATM Available Bit Rate)

– From router to the sender – like a ”choke” packet saying it’s congested
– Router marks a filed in a packet flowing through towards the receiver,

receiver then notifies sender

7

TCP congestion control
End-to-end, each sender limits that rate at which sends traffic
into the network based on hints about congestion
– There are some variations using ECN (e.g., DCTCP for data centers)

How does a sender limit its sending rate?
– Sender keeps track of its congestion window, cwnd
– LastByteSent – LastByteAcked ≤ min(cwnd, rwnd)

(amount of unack’ed data)
– Sending rate ~ cwnd/RTT bytes/sec

How does it perceive there’s congestion?
– Lost packet, either a timeout or three duplicate ACKs

What algorithm should it use to adjust sending rate?
– …

8

TCP guiding principles for congestion
Adjusting sending rate
– Lost segment implies congestion, decrease rate
– ACK means a delivered segment, increase rate
– Self-clocking – fast/slow arriving ACK, fast/slow growing cwnd

Bandwidth probing
– Increase rate in response to ACKs until

• A loss occurs, decrease transmission rate
– And try again in cased it has changed

TCP congestion control operates in three phases
– Slow start
– Congestion avoidance
– Fast recovery (recommended but not required)

9

TCP congestion control – Slow start
Initially, net capacity is unknown, start with cwnd= 1 MSS, so a sending
rate of MSS/RTT

Increase by 1 MSS every time it gets an ACK, so doubling
sending rate every RTT – exponential growth
When does it end?
– Loss indicated by timeout → ssthresh = cwnd/2

(slow start threshold) and cwnd = 1, try again
– If cwnd ≥ ssthresh (previous congestion), avoid congestion by

slowing down increasing rate
– Loss indicated by 3 duplicate ACKs, make a fast retransmit

and move to fast recovery

RTT

10

TCP congestion control – Slow start

11

Slow
start

dupACKcount++

duplicate ACK
L
cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

Initially, net capacity is
unknown, so

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s),
as allowed

new ACK

Increase by 1 MSS every time
it gets an ACK, so doubling
sending rate every RTT –
exponential growth

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Loss indicated by
timeout →
ssthresh = cwnd/2
(slow start threshold)
and cwnd = 1,try
again

L
cwnd > ssthresh

If cwnd ≥ ssthresh
(previous congestion),
move to Congestion
Avoidance, risky
increasing at the same
rate

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3

Loss indicated by 3 duplicate
ACKs, make a fast retransmit
and move to Fast Recovery

TCP congestion control – Congestion avoidance

Congestion
avoidance

cwnd = cwnd + MSS * (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK Linear growth now to avoid
congestion

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

Serious issue, go
back to Slow Start

dupACKcount++
duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3
On loss by triple-duplicate
ACK, Fast Retransmit

12

TCP congestion control – Fast recovery
The network is delivering segments (that’s how we get duplicates), no need
for drastic measures

Fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

cwnd = ssthresh
dupACKcount = 0

New ACK

Eventually the packet arrives
(got ACK), so move to
Congestion Avoidance

If it doesn’t before timeout, a
more serious issue, Slow Start

13

TCP Tahoe, TCP Reno and Fast Recovery
TCP Tahoe, earlier version, doesn’t include Fast Recovery
TCP Reno does

14

Initial Slow Start
phase

First 8 rounds, both
take the same actions

3x Dup ACK

Tahoe treats it as a timeout
and sets cwnd to 1

Reno cuts
cwnd in half

All congestion control

15

Slow
start

dupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

timeout

ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

L

cwnd > ssthresh

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

cwnd = ssthresh
dupACKcount = 0

New ACK

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0
transmit new segment(s), as allowed

new ACK

timeout
ssthresh = cwnd/2
cwnd = 1 MSS
dupACKcount = 0
retransmit missing segment

dupACKcount++

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3

Fast
recovery

Congestion
avoidance

TCP congestion control overview
Ignoring initial slow start period and assuming losses are
indicated by triple duplicate ACKs instead of timeouts
– Additive, linear increase of 1 MSS per RTT
– Multiplicative decrease, halving of cwnd
– So, the avg throughput ~0.75 * Max

since it halves when it reaches it
(Max/2*RTT and Max/RTT)

Ongoing work, can you
predict loss using RTT?
How do you work with
high-bandwidth or high RTT
paths? …

16
cw

nd
: T

C
P

se
nd

er

co
ng

es
tio

n
w

in
d

ow
 s

iz
e

AIMD saw tooth behavior:
probing for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

A congestion control algorithm is far if each connection gets
equal share of the link bandwidth
Is TCP AIMD fair? An intuitive argument
– 2 TCP connections sharing a link, same MSS

and RTT, with data to send, no other connection
In congestion avoidance, bandwidth
of both grows at same rate, moving
at ~45° angle up-right
Assuming only TCP connections traverse
the bottleneck link, all have same RTT, …
– Sessions with smaller RTT can grab

bandwidth faster, so get better throughput

TCP fairness

Bottleneck router
of capacity R

TCP Conn. 1

TCP Conn. 2

R

R

Full bandwidth

utilization

Equa
l b

an
dwidth

sh
are

Conn. 1 throughput

C
on

n.
 2

 th
ro

ug
hp

ut

Enough for both,
increase

Oops, go down

17

Nagle’s algorithm merges small packets
An app may write a series of small message to a TCP stream
– E.g., write(“OK\n”); write(“READY\n”); write(“GO\n”);

A simple implementation of TCP would send segments for each,
with high overhead from the 40B of TCP packet header
– Merging small packets into one larger one would reduce network load

(40+3) + (40+6) + (40+3) → (40+12) : 132 → 52 bytes
Wait until segment is full before sending, unless there are no un-
ACK’ed segments outstanding (eg., send first segment
immediately)

18

Interactive applications
Interactive apps and bulk-transfer apps prefer different TCP behavior
Socket options give applications some control of the underlying TCP:
– TCP_NODELAY socket option disables Nagle’s algorithm
– Every write → segment(s) being sent immediately (if allowed by window)
– Nagle’s algorithm adds extra latency which may hurt performance of applications that

send small, time-sensitive data. (eg., GUI events)
TCP_NOPUSH is even more aggressive than standard Nagle
– Wait until send buffer is full before sending segment(s)
– Also, don’t set PSH bit (to maximize buffering on the receiver’s side as well)

Usually the PSH bit will be set on the last segment in a write call
– PSH tells the receiving TCP implementation to alert the receiving process that that

data is ready

TCP Keepalive
An idle TCP connection involves no data exchange
Optionally, a TCP host may occasionally send an empty data
segment, called a keepalive message, just to test whether an
ACK will return
– Keepalive has SEQ # one less than expected, to trigger an ACK

response
– Low frequency, ~once per minute

Disabled by default, only used in special situations
– SSH clients give the option to enable TCP keepalives
– This forces NAT routers to keep the port mapping alive

Some application-level protocols have their own keepalive msgs

20

Recap
Congestion control can mean higher latencies, lower throughput
and wasted effort
TCP congestion control is done using a dynamic congestion
window, controlled by heuristics that operate in phases
– Slow start – exponential growth to find approximate network capacity
– Congestion avoidance – as you get closer … linear growth, slowly trying

to increase throughput
– Fast recovery – If one packet is lost, resend and cut window in half

Adapts to changing network conditions

21

