Internet Protocol

To do ...

□ The Internet protocol (IP) – IPv4, IPv6 ...

Northwestern

Slides partially based on J. Kurose and K. Ross, "Computer Networking: A Top Down Approach", 7Ed., 2016

IP datagram format

IP fragmentation, reassembly

- Network links have some MTU (max. transfer size) largest possible link-level frame
 - And different link types, different MTUs
- Large IP datagram divided ("fragmented") within net
 - One datagram becomes several datagrams
 - Reassembled only at final destination, on end systems (*why?*)
 - IP header bits used to identify, order related fragments

IP fragmentation, reassembly

IPv4 addressing

- Interface: connection between host/router and physical link
 - Router's typically have multiple interfaces
 - Hosts typically have one or two (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface
- IP address: 32-bit identifier for host, router interface
 - Typically written in dotted-decimal notation (each byte in decimal and separated by a period)

IP addressing: introduction

• How are interfaces actually connected?

Subnets

- IP address
 - Subnet part high order bits
 - Host part low order bits
- What's a subnet ?
 - Device interfaces with same subnet part of IP address
 - Can physically reach each other without intervening router

network consisting of 3 subnets

Subnets

- Recipe to determine the subnets
 - Detach each interface from its host or router, creating islands of isolated networks
 - Each isolated network is called a subnet

Subnet mask: /24

IP addressing: CIDR

- The Internet's address assignment strategy is called CIDR
- Classless InterDomain Routing
 - Subnet portion of address of arbitrary length
 - Address format: a.b.c.d/x, where x is # bits in subnet
 portion (most significant)

← host →

11001000 00010111 00010000 00000000 200.23.16.0/23

- Using prefixes reduces the size of forwarding tables for routers outside the organization (a single entry for a.b.c.d/x is enough)
- Classful addressing forced subnets portions to be 1 (A), 2 (B) or 3 (C) bytes, leading to wasted IPs C too small (254), B (65,634) too large

IP addresses: how does a host get one?

- Hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP [RFC 2131]

- A host can dynamically obtain an IP from network server when joining a network
 - Host can renew its lease on address in use
 - Allows reuse of addresses (only hold address while connected/"on") or it can always assign the same
 - Support for mobile users who want to join network
- DHCP overview
 - Host broadcasts "DHCP discover" msg [optional]
 - DHCP server responds with "DHCP offer" msg [optional]
 - Host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg
 - (DHCP request encapsulated in UDP)

DHCP [RFC 2131]

- A host can dynamically obtain an IP from network server when joining a network
 - Host can renew its lease on address in use
 - Allows reuse of addresses (only hold address while connected/"on") or it can always assign the same
 - Support for mobile users who want to join network
- DHCP can return more than just allocated IP address on subnet
 - Address of first-hop router for client, the default gateway
 - Name and IP address of DNS sever(s)
 - Network mask (indicating network versus host portion of address)

DHCP overview – a client-server protocol

DHCP client-server scenario

IP addresses: how to get one?

- How to get a subnet part of IP addr?
- Gets allocated portion of its provider ISP's address space
 - E.g., the ISP could have been allocated a /20, divide it into 8 parts and give you one

ISP's block	<u>11001000</u>	00010111	00010000	00000000	200.23.16.0/20
Organization 0	<u>11001000</u>	00010111	00010000	00000000	200.23.16.0/23
Organization 1	<u>11001000</u>	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	<u>11001000</u>	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
Organization 7	<u>11001000</u>	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

IP addressing: the last word...

- How does an ISP get block of addresses?
 - ICANN: Internet Corporation for Assigned
- Names and Numbers http://www.icann.org/
 - allocates addresses
 - manages DNS
 - assigns domain names, resolves disputes

Network Address Translation - NAT

Why NATs?

- Local network uses just one IP address as seen from Range of addresses not needed from ISP: just one IP address for all devices
 - Can change addresses of devices in local network without notifying outside world
 - Can change ISP without changing addresses of devices in local network
 - Devices inside local net not explicitly addressable, visible by outside world (a security plus)

NAT implementation

- NAT router must
 - Outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - . . . remote clients/servers will respond using (NAT IP address, new port #) as destination address
 - Remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair
 - Incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- Some controversy
 - Routers should only process up to layer 3
 - Address shortage should be solved by IPv6
 - Violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - NAT traversal: what if client wants to connect to server behind NAT?

IPv6: motivation

- Initially, 32b address space soon to be completely allocated
- Additional motivation
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS
- IPv6 datagram format
 - fixed-length 40 byte header
 - no fragmentation allowed

IPv6 datagram format

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

- Not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

IPv6 adoption

- Long (long!) time for deployment, use
 - 20 years and counting!
 - think of application-level changes in last 20 years: WWW, Facebook, streaming media, Skype, ...

Recap

- We covered the data plane function of the network layer
 - The per-router functions that rule how packets arriving on a router's input link are forwarded on an output link
- From routers' internals to addressing IPv4 and v6
- Next, the control plane network-wide logic that control end-toend routing and how services are configured and managed