
To do …

q Understand principles behind network 
control plane

q Traditional routing algorithms
q Making routing scalable

Routing Algorithms

Slides partially based on J. Kurose and K. Ross, “Computer 
Networking: A Top Down Approach”, 7Ed., 2016

Physical

Application

Transport

Network

Link



Network-layer functions
Recall: two network-layer functions
– Forwarding: move packets from router’s input 

to appropriate router output
– Routing: determine route taken by packets 

from source to destination
Two approaches to structuring network control plane
– Per-router control (traditional)
– Logically centralized control (software defined networking)

But how are routers’ forwarding tables configured?

2

Data plane

Control plane



Today: Routing protocols
Goal of routing protocols: to determine “good” paths from 
sending to receiving host, through network of routers
– Path: sequence of routers packets will traverse from src to dst
– “Good” – typically least “cost”, “fastest”, “least congested”

Next time: Internet routing
3



G = (N,E)
A set of routers: N = { u, v, w, x, y, z }
And links: E ={ (u,v), (u,x), (v,x), (v,w), 

(x,w), (x,y), (w,y), (w,z), (y,z) }

To formulate routing problems – A graph
c(x,x’) = cost of link (x,x’)

Could always be 1, or inversely related to 
bandwidth, or inversely related to congestion

Cost of path (x1, x2, x3,…, xp) = Σ c(xi,xi+1) for i: 1..p

Key question: what is the least-cost path between u and z?

2
2

1
3

1

1

2

5
3

5

u

x

v w

y

z

4

Cost of path (u,w,z) = c(u,w) + c(w,z) = 5 + 5 = 10



Routing algorithm classification
Global
– All routers have complete topology (global), link cost info
– “Link state” algorithms

Or decentralized
– Router knows physically-connected neighbors, link costs to neighbors
– Iterative process of computation, exchange of info with neighbors
– “Distance vector” algorithms (each node keeps a vector of estimates)

Another broad way to classify them – Static or dynamic
– Static: routes change slowly over time
– Dynamic: routes change more quickly

• Periodic update in response to link cost changes

5



A link-state routing algorithm – Dijkstra’s
Net topology and all link costs known to all nodes
– Via “link state broadcast”, each node broadcast link-state packets to all 

other nodes (each packet containing identity and cost of attached links) 
– All nodes have the same info (global)

Computes least cost paths from one node (source) to all others
– Gives forwarding table for that node

Algorithm is iterative: after kth iterations, know least cost path 
to k destinations

6



Dijsktra’s algorithm

1 /* Initialization */
2 N' = {u} 
3 for all nodes v 
4    if v adjacent to u 
5       then D(v) = c(u,v) 
6    else D(v) = ∞
7 
8   repeat
9    find w not in N' such that D(w) is a minimum 
10   add w to N' 
11   update D(v) for all v adjacent to w and not in N': 
12      D(v) = min( D(v), D(w) + c(w,v) ) 
13 /* New cost is either old cost to v or known
14 shortest path cost to w plus cost from w to v */ 
15 until N’= N

Notation:
• c(x,y): link cost from x to y;  ∞ if not direct 

neighbors
• D(v): current cost of path from src to dst v
• p(v): previous node on path from src to v
• N': set of nodes whose least cost path is 

definitively known

7



Dijkstra’s algorithm: example

8

Step N'
D(v)

p(v)

0
1
2
3
4
5

D(w)
p(w)

D(x)
p(x)

D(y)
p(y)

D(z)
p(z)

u ∞ ∞ 7,u 3,u 5,u
uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx
uwxv 14,x 10,v 

uwxvy 12,y 
uwxvyz

4

2

5

u

v

y z

x

w

4 7 9

7 3
83notes:

• Construct shortest path tree by 
tracing predecessor nodes

• Ties can exist, broken arbitrarily



Dijkstra’s algorithm: Example 2

9

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞ 
∞ 

4,y
4,y
4,y

2
2

1
3

1

1

2

5
3

5

u

x

v w

y

z



Dijkstra’s algorithm: Example

Resulting shortest-
path tree from u

Resulting forwarding 
table in u

Destination Link

v (u,v)

x (u,x)

y (u,x)

w (u,x)

z (u,x)

2
2

1
3

1

1

2

5
3

5

u

x

v w

y

z

Step
0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞ 
∞ 

4,y
4,y
4,y

10



Dijkstra’s algorithm – Complexity and concerns
Complexity: n nodes
– Each iteration: need to check all nodes, w, not in N’
– First iteration look at n – 1, then n – 2, … n(n+1)/2 comparisons: O(n2)
– More efficient implementations possible: O(n log n)

A potential problem – oscillation
– e.g., suppose link cost equals amount of carried traffic

z x

y

w1
1 + e

e0
0

^1
^1

^e

Initially, z and x add 1 
and x adds e

z x

y

w

1 + e

0

^1
^1

^e

1

2 + e
0

0

Given this cost, better 
go clockwise

z x

y

w

1

0

^1
^1

^e

1 + e

2 + e0

0

Given this cost, better 
go counterclockwise

…

11



Distance vector algorithm
Link-state algorithm uses global info, distance vector is 
– Distributed – Each node gets info from one or more of its directly 

attached nodes, calculates distances and distribute to its neighbors 
– Iterative – Do this until no more info is exchanged between neighbors 
– Asynchronous – Nodes do this whenever

Before looking at the algorithm, a key equation: Bellman-Ford
Let dx(y): cost of least-cost path from x to y
Then dx(y) = min {c(x,v) + dv(y) }

12

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y



Bellman-Ford with an example 

dv(z) = 5, dx(z) = 3, dw(z) = 3

du(z) = min { c(u,v) + dv(z),
c(u,x) + dx(z),
c(u,w) + dw(z) }

= min {2 + 5,
1 + 3,
5 + 3}  = 4

Node achieving minimum is next hop 
in shortest path, used in forwarding table

B-F equation states
2

2
1

3

1

1

2

5
3

5

u

x

v w

y

z

13



Distance vector algorithm 
Dx(y) = estimate of least cost from x to y
– x maintains  distance vector Dx = [Dx(y): y є N ]

Node x
– knows cost to each neighbor v: c(x,v)
– maintains its neighbors’ distance vectors. 

For each neighbor v, x maintains Dv = [Dv(y): y є N ]
Key idea
– From time-to-time, each node sends its own DV estimate to neighbors
– When x receives new DV estimate from neighbor, updates its own DV 

using

Dx(y) ← minv{c(x,v) + Dv(y)}  for each node y ∊ N

14



Distance vector algorithm 
Iterative, asynchronous: each local iteration caused by: 
– Local link cost change 
– DV update message from neighbor

Distributed
– Each node notifies neighbors only when its 

DV changes
• Neighbors then notify their neighbors if necessary

Under minor, natural conditions, the 
estimate Dx(y) converge to the actual 
least cost dx(y) 

if DV to any dest has 
changed, notify neighbors

each node:

wait for (change in local link 
cost or msg from neighbor)

recompute estimates

15



x   y   z
x
y
z

0  2   7

fro
m

cost to

2  0   1
7   1   0

cost to
x   y   z

x
y
z

0  2   7

fro
m

2  0   1
3  1   0

z ∞ ∞ ∞

cost to

fro
m

x   y   z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

∞
2   0   1

Node y

fro
m

x   y   z
x
y
z

∞ ∞ ∞
7 1 0

∞ ∞  ∞
Node z

fro
m

x   y   z
x
y
z

0
2   0   1
7   1   0

32 

cost to
x   y   z

x
y

0  2   7
∞ ∞ ∞

cost to
Node x

fro
m

x z

y2 1

7

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) + Dy(z), c(x,z) + Dz(z)} 
= min{2+1 , 7+0} = 3

16

time



fro
m

x   y   z
x
y
z

0  2   7

cost to

2  0   1
3  1   0

x   y   z
x
y
z

0  2   3

fro
m

cost to

2   0   1
3  1   0

x   y   z
x
y
z

0  2   3

fro
m

cost to

3  1   0
2  0   1

x   y   z
x
y
z

0  2   3

fro
m

cost to

2  0   1
3  1   0

x   y   z
x
y
z

0  2   7

fro
m

cost to

2  0   1
7   1   0

time

z ∞ ∞ ∞

cost to

time

fro
m

x   y   z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

∞
2   0   1

Node y

fro
m

x   y   z
x
y
z

∞ ∞ ∞
7 1 0

∞ ∞  ∞
Node z

fro
m

x   y   z
x
y
z

0
2   0   1
7   1   0

32 

cost to
x   y   z

x
y

0  2   7
∞ ∞ ∞

cost to
Node x

fro
m x z

y2 1

7

17



Distance vector: link cost changes
Link cost changes
– Node detects local link cost change 
– Updates routing info, recalculates 

distance vector
– If DV changes, notify neighbors 

“good news 
travels fast”

t0 : y detects link-cost change (4 to 1), updates its DV, informs 
its neighbors.

t1 : z receives update from y, updates its table, computes new 
least cost to x (from 5 to 2), sends its neighbors its DV.

t2 : y receives z’s update, updates its distance table.  y’s least 
costs do not change, so y does not send a message to z. 

18

x z

y4 1

50

1



Distance vector: link cost increase
Link cost changes
– Node detects local link cost change 

19

x z

y4 1

50

60

Before link cost change: Dy(x) = 4, Dy(z) = 1, Dz(y) = 1, Dz(x) = 5

t0: y detects link-cost change, computes new minimum-cost path to x 
– Dy(x) = min{c(y,x) + Dx(x), c(y,z) + Dz(x)} = min{60+0, 1 + 5} = 6

We know this is wrong because of our 
global view; all y sees is that direct to x 
is 60 and z says it can get there in 5

We have a routing loop! For y to get to x, 
go via z; and z goes via y …

t1: Since y has a new minimum cost to x, it informs z

z receives new DV from y, y’s minimum cost to x is 6, 
so Dz(x) = min{50+0, 1+6} = 7 … and informs y
y receives new DV from z, z’s minimum cost to x is 7, 
so Dy(x) = min{60+0, 1+7} = 8 … and informs z

… 44 times! Until z computes cost via y to be > 50

Bad news travels slow - “count to 
infinity” problem!



Distance vector: Poisoned reverse
To avoid it – poisoned reverse
– If z routes through y to get to x :
– z tells y its (z’s) distance to x is infinite Dz(x) = ∞ even if it knows to be 5
– So y won’t route to x via z (it things z has no path to x)

How it works?
– When link costs changes to 60, y updates its

table and continues to route directly to x and 
informs z of its new cost to x, Dy(x) = 60

– z receives DV from y and switches to the direct route,
informs y it can get to x in 50, Dz(x) = 50

– y updates its distance table with Dy(x) = 51 and 
poisons the least-cost path to x Dy(x) = ∞ 

Doesn’t work for loops with 3+ nodes

20

x z

y4 1

50

60



Comparison of LS and DV algorithms
Message complexity
– LS: with n nodes, E links, O(n * E) msgs sent  
– DV: exchange between neighbors only, convergence time varies

Speed of convergence
– LS: O(n2) algorithm requires O(nE) msgs, may have oscillations
– DV: convergence time varies, may be routing loops, count-to-infinity

Robustness: what happens if router malfunctions?
– LS: node can advertise incorrect link cost, each node computes only its 

own table
– DV: DV node can advertise incorrect path cost, each node’s table used 

by others so error propagates through the entire network

21



Our routing study thus far - idealized 
– All routers identical
– Network “flat”

… in practice

22

Scale with billions of destinations:
Can’t store all destinations in routing 
tables!
Routing table exchange would 
swamp links!

Administrative autonomy
Internet = network of networks

Each network admin may want to
control routing in its own network

Making routing scalable



Internet approach to scalable routing
Aggregate routers into regions known as “autonomous 
systems” (AS) (a.k.a. “domains”)
– Each with own ASN, AS number (assigned by ICANN regional registries)

Intra-AS routing
– Routing among hosts, routers in same AS (“network”)
– Routers in AS run same intra-domain protocol, maybe different in others
– Gateway router: at “edge” of AS, has link(s) to router(s) in other AS’es

Inter-AS routing
– Routing among AS’es
– Gateways perform inter-domain routing 

(besides intra-domain routing)

23

Next time


