Routing Algorithms

TO 0\0

0 Understand principles behind network
control plane

a Traditional routing algorithms
O Making routing scalable

Slides partially based on J. Kurose and K. Ross, “Computer
Networking: A Top Down Approach”, 7Ed., 2016

Application O

Transport Q

Network Ci)

Link <:>

Physical d)
Northwestern

Network-layer functions

* Recall: two network-layer functions

— Forwarding: move packets from router’s input

) Data plane
to appropriate router output

— Routing: determine route taken by packets Control plane
from source to destination

» Two approaches to structuring network control plane
— Per-router control (traditional)
— Logically centralized control (software defined networking)

» But how are routers’ forwarding tables configured?

Today: Routing protocols

» Goal of routing protocols: to determine “good” paths from
sending to receiving host, through network of routers

— Path: sequence of routers packets will traverse from src to dst

n 11 n 1

— "Good" - typically least “cost”, “fastest”, “least congested”

. ~w 3 v e, s i ol
-) R A\ LR = e

¥ & X D ¢ \ AN : :

\ \ — y =
! Ly ¥ w2 £ \ 0 A e g ' g /

| | & | A2 \ : \ AN \ s s - «

S i A : $ Y \ AW y, e

% o X \ AN /
® W\ - % “\ \ Y - e e}
) \ ol S\ WA) o =
\ \ = 2 -
% & QN -
N\ : 7 # 3 \\
\ 3 A 5 <, W\ ‘.(

* Next time: Internet routing

To formulate routing problems — A graph

c(x,x’) = cost of link (x,x”)

Could always be 1, or inversely related to
bandwidth, or inversely related to congestion

Cost of path (xq, Xz, X3,..., Xo) = Z c{x;,X4) for iz 1..p

G = (N,E)
A set of routers: N={u,v,w, x,y,z}
And links: E ={ (u,v), (u,x), (v,x), (v,w),
(), (x,y), (W), W,2), (y,2)}

Cost of path (u,w,z) = c(u,w) + c(w,z) =5+ 5 =10

Key question: what is the least-cost path between u and z?

Routing algorithm classification

* Global

— All routers have complete topology (global), link cost info
— “Link state” algorithms

» Or decentralized
— Router knows physically-connected neighbors, link costs to neighbors
— lterative process of computation, exchange of info with neighbors
— “Distance vector” algorithms (each node keeps a vector of estimates)

» Another broad way to classify them — Static or dynamic

— Static: routes change slowly over time

— Dynamic: routes change more quickly
e Periodic update in response to link cost changes

A link-state routing algorithm — Dijkstra’s

» Net topology and all link costs known to all nodes

— Via "link state broadcast”, each node broadcast link-state packets to all
other nodes (each packet containing identity and cost of attached links)

— All nodes have the same info (global)

» Computes least cost paths from one node (source) to all others
— Gives forwarding table for that node

» Algorithm is iterative: after kth iterations, know least cost path
to k destinations

Dijsktra’s algorithm

Notation:

o . * ¢(x,y): link cost from x to y; if not direct
1l /* Initialization */ neighbors
2 N' = {u} * D(v): current cost of path from src to dst v
3 for all nodes v * p(v): previous node on path from src to v
4 if v adjacent to u « N set of nodes whose least cost path is
5 then D(v) = c(u,Vv) definitively known
6 else D(v) = ®

7
(\‘8 repeat
9

find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N':
12 D(v) = min(D(v), D(w) + c(w,Vv))
13 /* New cost is either old cost to v or known
\\\/i% shortest path cost to w plus cost from w to v */
1

5 until N’'= N

Dijkstra’s algorithm: example

D(v) Dw) D(x) D(y) D)
Step N' pv) pw) pKx) ply) p@
0) u /,u 3_,u 5,u oo 0o
1 uw 6,w @,u 11,w oo
2 UWX @ 11w 14,x
3 UWXV @ 14,x
4 UWXVY @
5 UWXVvyz

notes:

Construct shortest path tree by
tracing predecessor nodes

Ties can exist, broken arbitrarily

Dijkstra’s algorithm: Example 2

Ste N'_ D(v),p(v) D(w),p(w) D(x),p(x) D(y).p(y) D(z),p(z)
u 2,u 5u - 1u oo

ux «——2,u 4Xx 2 X

4.y
UXyv <« 3,y 4,y
4y

o|h|w|N|=|ofo
c
X
<
Mol Mo
<

Dijkstra’s algorithm: Example

Step N' D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z)
0 u 2,u 5,u (1,u) 403 oo
1 ux 2,u 4 x o (2,x) oo
2 UXy C \2723 3y 4,y
3 UXyV (3y) 4y
4 UXYVW 4y)
5 Uxyvwz
Resulting shortest- Resulting forwarding
path tree from u table in u
Destination | Link
Y (u,v)
X (u,x)
y (u,x)
W (u,x)
z (u,x)

10

Dijkstra’s algorithm — Complexity and concerns

» Complexity: n nodes
— Each iteration: need to check all nodes, w, notin N’
— First iteration look at n -1, then n -2, ... n(n+1)/2 comparisons: O(n?)
— More efficient implementations possible: O(n log n)

» A potential problem - oscillation
— e.g., suppose link cost equals amount of carried traffic

1/ \1+e 2+e/ 0 0 \2+e

A1 A1
a @ A1 @ 0 N @ 0 N
0 /
1 1
0 /e 1 > 1\ / + e
Ae Ne Ne
Initially, z and x add 1 Given this cost, better Given this cost, better

and x adds e go clockwise go counterclockwise »

Distance vector algorithm

» Link-state algorithm uses global info, distance vector is

— Distributed — Each node gets info from one or more of its directly
attached nodes, calculates distances and distribute to its neighbors

— lterative — Do this until no more info is exchanged between neighbors
— Asynchronous — Nodes do this whenever

» Before looking at the algorithm, a key equation: Bellman-Ford
Let d,(y): cost of least-cost path from x to y

Then d,(y) = min {c(x,v) + d,(y) }

\ cost from neighbor v to destination y
cost to neighbor v

min taken over all neighbors v of x
12

Bellman-Ford with an example

d2) =5, di(2) = 3,d,(2) =

3
, B-F equatlon states
/6 = min { c(u,v) + d,(2),

c(u,x) + d,(2),
(2) }

c(u,w) +d,,
=min {2 + 5,

1+ 3,

5+3} =4

Node achieving minimum is next hop
in shortest path, used in forwarding table

13

Distance vector algorithm

» D,(y) = estimate of least cost from x to y
— X maintains distance vector D, = [D,(y): y € N]

* Node x
— knows cost to each neighbor v: c(x,v)

— maintains its neighbors’ distance vectors.
For each neighbor v, x maintains D, = [D,(y): y € N]

» Key idea
— From time-to-time, each node sends its own DV estimate to neighbors

— When x receives new DV estimate from neighbor, updates its own DV
using

D.(y) < min{c(x,v) + D y)} for each nodeye N

14

Distance vector algorithm

» |terative, asynchronous: each local iteration caused by:
— Local link cost change
— DV update message from neighbor

* Distributed cach node: !
— Each node notifies neighbors only when its wait for (change in local link
DV changes cost or msg from neighbor)
e Neighbors then notify their neighbors if necessary
» Under minor, natural conditions, the recompute estimates
estimate D,(y) converge to the actual
least cost dx(y) if DV to any‘;zlest has

changed, notify neighbors

15

2+3 Dy(y) = min{c(x,y) + Dy(y), c(x,2) + D(y)}

0 1\ =min{2+0, 7+1} =2
10

D\(z) = min{c(x,y) + Dy(2), ¢(x,z) + D,(2)}
cost {0 =min{2+1, 7+0} =3

N < X

20 1
710

cost to

y Z

N < X

X

02 7

20 1 2 1
310

» time /
16

Node x Xy z Xy z ;”?“;

XO/27 X0 2 3 xl02 3 2 1
gv Y12 01 y|2 0 1

? 217 1.0 z|31 0 ’
Node y X Co§t toz Xcoi,t toz

X x|102 7 Xx|02 3

§ y Y20 1 Sy 20 1

z Zl7 10 T z[310

cost to cost to

Nodez|X Yy Z

0O o0 o0

0O &0 o0

from
N < X

17

Distance vector: link cost changes

* Link cost changes 1
— Node detects local link cost change '\4 1
— Updates routing info, recalculates
distance vector >0

— If DV changes, notify neighbors

(14
good news
travels fast”

to: y detects link-cost change (4 to 1), updates its DV, informs
its neighbors.

t;: z receives update from y, updates its table, computes new
least cost to x (from 5 to 2), sends its neighbors its DV.

t,: y receives z's update, updates its distance table. y's least
costs do not change, so y does not send a message to z.

18

Distance vector: link cost increase

* Link cost changes 60
— Node detects local link cost change g@%
Before link cost change: D,(x) = 4, D,(z) = 1, D,(y) = 1, D,(x) = 5 50

to. y detects link-cost change, computes new minimum-cost path to x
— D,(x) = min{c(y,x) + Dy(x), cly,z) + D,(x)} = min{60+0, 1 + 5} = 6

We have a routing loop! Fory to get to x, We know this is wrong because of our
go viaz;and zgoesviay ... global view; all y sees is that direct to x

t;: Since y has a new minimum cost to x, it informs z is 60 and z says it can get there in 5

z receives new DV from y, y's minimum cost to x is 6,
so D,(x) = min{50+0, 1+6} =7 ... and informs y

y receives new DV from z, z's minimum cost to x is 7,
so D,(x) = min{60+0, 1+7} = 8 ... and informs z

Bad news travels slow - "count to
infinity” problem!

... 44 times! Until z computes cost via y to be > 50
19

Distance vector: Poisoned reverse

» To avoid it — poisoned reverse
— If z routes through y to get to x :

— z tells y its (z's) distance to x is infinite D,(x) = « even if it knows to be 5

— So y won't route to x via z (it things z has no path to x) £

* How it works? N 1
— When link costs changes to 60, y updates its
table and continues to route directly to x and

. . 50
informs z of its new cost to x, D,(x) = 60

— zreceives DV from y and switches to the direct route,
informs y it can get to x in 50, D,(x) = 50

— y updates its distance table with D,(x) = 51 and
poisons the least-cost path to x D(x) = «

» Doesn’t work for loops with 3+ nodes

20

Comparison of LS and DV algorithms

*» Message complexity

— LS: with n nodes, E links, O(n * E) msgs sent

— DV: exchange between neighbors only, convergence time varies
» Speed of convergence

— LS: O(n?) algorithm requires O(nE) msgs, may have oscillations

— DV: convergence time varies, may be routing loops, count-to-infinity
* Robustness: what happens if router malfunctions?

— LS: node can advertise incorrect link cost, each node computes only its
own table

— DV: DV node can advertise incorrect path cost, each node’s table used
by others so error propagates through the entire network

21

Making routing scalable

» Our routing study thus far - idealized
— All routers identical
— Network “flat”

e ... In practice

Scale with billions of destinations: Administrative autonomy
» Can't store all destinations in routing * Internet = network of networks
tables!

» Each network admin may want to
* Routing table exchange would control routing in its own network
swamp links!

22

Internet approach to scalable routing

» Aggregate routers into regions known as “autonomous
systems” (AS) (a.k.a. “domains”)
— Each with own ASN, AS number (assigned by ICANN regional registries)

* Intra-AS routing
— Routing among hosts, routers in same AS (“network”)
— Routers in AS run same intra-domain protocol, maybe different in others
— Gateway router: at “edge” of AS, has link(s) to router(s) in other AS’es

* Inter-AS routing
— Routing among AS’es

— Gateways perform inter-domain routing
(besides intra-domain routing)

23

