The link layer – Broadcast

To do ...

- □ Link layer service
- Error detection and correction
- Multiple access protocols and examples

Slides partially based on J. Kurose and K. Ross, "Computer Networking: A Top Down Approach", 7Ed., 2016

Each layer solves a particular set of problems

- Link layer (layer 2) Shares a physical channel among several transmitters/receivers
- Network layer (layer 3)
 - Routing from source to destination, along many hops
- Transport layer:
 - Multiplexing (>1 connection / machine)
 - Ordering, Acknowledgement, Pacing
- HTTP layer:
 - Resource urls, Response codes,
 - Caching, content-types, ...

What services does it provide?

- Framing encapsulate each network-layer datagram within a frame before transmission
- Link access A medium access control (MAC) protocol specifies the rules by which a frame is transmitted onto the link
- Reliable delivery Reliable across a link; as with transport, you can build it based on ack and retransmission; may make sense for error-prone links but be overhead for others
- Error detection and correction Bit errors due to things like electromagnetic noise; can the bit errors be detected or corrected?

Terminology

- Nodes are hosts and routers, switches, WiFi access points
- Links are communication channels that connect adjacent nodes along communication path
 - wired links
 - wireless links
 - LANs
- On a given link, a transmission nodes encapsulates a datagram in a link-layer frame

Types of link-layer channels

- There are two fundamental type of link-layer channels
 - 1. Broadcast, connecting multiple hosts in wireless LAN, satellite networks, hybrid fiber-coaxial cables, ... many hosts connected to the same channel, so we need "multiple access protocols"
 - 2. Point-to-point communication, e.g., between routers or between a host and a nearby Ethernet switch

Where is it implemented? Hardware or software?

- On routers' line cards
- In hosts, software or hardware?
 - Mostly in the network adapter (or NIC), HW – a single, special-purpose chip implements many of the functions – framing, line access, error detection
 - Part in SW assembling link-layer addressing information and activating the controller HW, responding to controller interrupts, handling error conditions, passing datagram up the stack …

Error detection and correction

- Bit-level error detection and correction is a key service
 - Wireless media are especially prone to bit-flip errors, due to noise
- Error detection and correction
 - Notice a bit error and discard the packet or fix it before delivering
 - Detect and correct FEC or Forward Correction Error
 - In both cases, additional bits of redundant data are added
- Model for discussion

Parity

- Add a one or zero to make the total number of ones even (even parity scheme) ← d data bits → Parity bit 10101 11110 01110 0
 - Single-bit parity detects a single bit error: **10101 11110 01110** 0
- Two-dimensional bit parity
 - Can detect and correct combination of two errors

parity

d_{1, j+1}

d_{2,j+1}

 $d_{1,1}$... $d_{1,j}$

. . .

Checksum and Cycle Redundancy Check

- Checksum used in IPv4, UDP, and TCP headers
 - Break the data into 16b sequences, add them up
 - Wrap the carry-out bits to the least-significant position
 - Complement
 - Simple and fast to run in software (transport, network-layer)
- Cycle Redundancy Check (CRC)
 - For d data bits (D) to be sent, sender choose r bits so that the d + r bit patter is exactly divisible by G, an agreed upon generator
 - Can be efficiently implemented
 - Ethernet header uses CRC-32, using a specific 32-bit generator

Medium Access Control (MAC)

- MAC is needed in broadcast links, where more than one node is sharing a single channel/medium
 - Clearly not for point-to-point links
- Collision is the fundamental problem with broadcast
 - Think of a (at least my) family reunion!
 - Multiple nodes try to communicate at once, interfering with each other
 - None of the colliding msgs can be received and must be retransmitted
 - Wasting time and bandwidth
- Can't be too aggressive (collision) or to polite (wasted time/bandwidth)

shared wire (e.g., cabled Ethernet)

Multiple Access Protocol goals

- With multiple nodes sharing a link of throughput R bps
 - Only one node communicating, should get the full bandwidth (R)
 - When N nodes have data to send, they should each get R/N bandwidth
- Protocol should be
 - Decentralized, with no single point of failure
 - It should be simple and inexpensive to implement
- Three basic classes of multiple access protocols
 - Channel partitioning
 - Random access
 - Taking turns

Channel partitioning protocols

- Time-division multiplexing
 - Eliminates conditions and is perfectly fair
 - But even if alone, a node can't get more than its R/N bps share and must wait for its turn
- Frequency-division multiplexing
 - Similarly, avoids collision and divides bandwidth fairly
 - But a node is limited to R/N even if alone
- Code division multiple access (CDMA)
 - Every node is assigned a code used to modulate the base signal (almost as assigning human languages to people in a room, signal for some, noise for the rest) – More on this soon

Random access protocols

- Any node can try sending immediately at full bitrate
- If there's a collision, retransmit but after a random delay (chosen independently)

Node 1: send (collision)send (success) Node 2: send (collision) send (success)

- Randomization will likely cause the two nodes to retry at different moments in the future
- Many examples, we will look at a couple
 - ALOHA
 - Carrier-Sense Multiple Access (CSMA) Ethernet

ALOHA: an early random access protocol

- 1970s for radio communication between Hawaiian islands
 - Why it matters? First example of radio packet network and the basis for Metcalfe's Ethernet
- ALOHA basics
 - (Re)Transmit the packet with probability p or wait for a time slot
 - A time slot = time to transmit a packet
 - No collision detection; no ACK implies collision probably occurred
 - Don't listen before broadcasting just assume channel is free

Efficiency and a small improvement – Slotted ALOHA

Basic ALOHA

- If the channel is busy, we expect 18% of the peak throughput
- Collision with other finishing/starting transmissions
- Slotted ALOHA requires time synchronization among senders
 - This lets it assign "virtual" slots of size L/R seconds with every segment being of L bits and the capacity of the link being R bps
 - Achieves 37% of the peak throughput

ALOHA

• Pros

- One sender can use full bitrate, unlike channel partitioning
- Decentralized, each node detects collision and independently decides when to retransmit
- Simple

Cons

- With multiple nodes, collisions are possible
- Link may be idle while waiting
- May interrupt another sender simply because didn't listen first
- So, poor throughput when busy

Carrier Sense Multiple Access (CSMA)

- In ALOHA, a node's decision to transmit is independent of what other nodes are doing
 - Doesn't matter if another one is transmitting
 - Doesn't stop if another one starts to interfere
- Humans (typically) do better
 - Listen before speaking or carrier sensing in networking
 - If someone else begins talking at the same time, stop talking collision detection
- Rules are embodied in a family of protocols CSMA and CSMA/CD (with Collision Detection)

Collisions are unavoidable

- Why carrier sensing is not enough to prevent collisions?
- Propagation delay in the channel delays carrier sensing observations
 - A node's knowledge of channel state is always slightly out-of-date
- The longer the propagation delay, the higher collision rate

	spatial layout of nodes							
+								
o_ 				t				
▲ tíj								

Collision detection

- Reduces the channel-time wasted by collisions
- How?
 - Measure channel signal
 - If energy is greater than transmission energy, there must be some extra signal
- Works well for wired channels
- For wireless, received radio signals are much weaker than transmitted signals, so collision detection is harder

CSMA/CD steps

- Carrier Sensing: listen to the channel before sending,
 - If it's busy, then wait
- Collision Detection: listen while transmitting,
 - Abort transmission immediately if another transmission is heard, try after waiting for a random interval of time ... but how long?
- Binary exponential backoff determines that
 - If frame has collided n times, choose a random value K in [0, (2ⁿ-1)], and waits for K * the time needed to send a frame (for Ethernet, K*512/bitrate, and n cannot grow past 10)
 - Exponential backoff resets for each new packet

Binary exponential backoff example

- A node attempts to transmit a frame for the fist time and detects collision
- Chooses between K = 0 or 1 with equal probability
 - K = 0, begin sensing immediately
 - K = 1, wait for time to send 512 bits, 512 μ sec on a 100Mbps Ethernet
- After a second collision, K is chosen from {0,1,2,3}, after three collisions from {0,1,2,3,4,5,6,7} ...
- New frame for transmission? Start from 0

Taking-turns protocols

- Getting a fair share
 - Random access protocols do not guarantee a fair share of bandwidth
 - Taking-turns protocols assign slots but the reservations are dynamic, not pre-scheduled
- Bluetooth, a taking-turns protocol called a Polling Protocol
 - A master node polls others, round-robin, sending a msg telling each to send up to H packets
 - If master sees a node stopped sending packets early, it polls next one
 - Polling msgs add some coordination overhead and the master can die

Token-passing protocols

- Similar to polling protocol, but without the special master node
- A token (a special frame) is exchanged among the nodes in some fixed order
 - Node holding the token can transmit up to some maximum number of frames, then must pass the token on
- No collision Nodes only sends while "holding" the token
- But lost token problem If token-holding node crashes, the entire network crashes
- FDDI (fiber distributed data interface) and IEEEE 802.5 are token-passing protocols

Multiple access protocol summary

	Channel Partitioning		Random Access		Taking-Turns	
	FDM	TDM	ALOHA	CSMA/CD	Polling	Token- Passing
Single Sender throughput	R/N	R/N	R	R	R – C*N	R – C*N
Busy throughput	R	R	~37% R <i>(slotted)</i> or ~18% R	$\frac{R}{1+5d_{prop}/d_{trans}}$	R – C*N	R – C*N
Collisions			yes	unlikely		
Centralized	yes	yes			yes	
Crash-sensitive					yes	yes
Requires time synchronization		yes	optional			
Requires carrier sensing				yes	yes	

DOCSIS – Link-layer protocol for cable Internet

- Combines ideas from all classes of multiple access protocols
- All modems in a neighborhood share the same coaxial medium
 - They are all connected to "one big wire"
 - They can all "hear" each other's traffic, in both directions

DOCSIS – Link-layer protocol for cable Internet

- FDM (channel partitioning) to divide upstream and downstream segments into multiple frequency channels
 - Each is a broadcast channel
 - No multiple access problem downstream (only the CMTS)
- Upstream channels also use TDM
 - Some time slots are for modems to send time requests
 - Time requests use a random-access protocol and may collide
 - How do you know? No allocated slot next time, exponential backoff to re-request
 - Remaining time slots are assigned to specific modems (taking turns)
- CMTS periodically broadcasts the time slot assignments, taking into account the time requests that were received

Recap

- Link-layer handles sharing a link/medium with multiple nodes
 - And handles error detection and correction: Parity, Checksum, and CRC.
- Medium Access Control / Multiple Access Protocol
 - Decide how to share the link
 - Two nodes sending simultaneously is a collision., packets are lost
- Three classes of sharing protocols
 - Channel Partitioning, random access and turn-taking
- And one example in DOCSIS