# The link layer – Switched LANs and More

To do ...

- LANs and virtual LANs
- MPLS
- Data center networks



## Forwarding within a switched local area network

- A set of machines within a small unit, like a lab or a department, are interconnected by a layer-2 switch
  - Working at the link layer, don't recognize network addresses (IPs)
  - They switch link-layer frames rather than datagrams
  - And don't use RIP or OSPF for routing
- How do they forward frames then?
  - Host and routers, or rather their adapters (network i/f) have a link-layer address
  - a.k.a LAN, physical or MAC address
  - Link-layer switches' interfaces don't have a MAC, they are there to connect hosts and routers transparently



## MAC addresses

- Network layer address or IP address
  - 32 bits for IPv4
  - Hierarchical, if the machine moves networks the address changes
- MAC address
  - Flat structure, used "locally" to get frame from one interface to another physically-connected interface (same network, in an IP-addressing sense)
  - 6 bytes burned in NIC ROM, sometimes software settable
  - e.g.: 1A-23-F9-CD-0C-9B

hexadecimal (base 16) notation (each "numeral" represents 4 bits)

## MAC address and ARP [RFC 826]

- To ensure no two adapters have the same, allocation administered by IEEE
  - Manufacturer buys portion (24b) of MAC address space
- Analogy
  - MAC address ~ Passport number same one wherever you are
  - IP address ~ postal address depends on IP subnet to which node is attached
- Since we have both, we need a protocol to translate between them – Address Resolution Protocol
  - Like DNS, which translates host names to IP addresses, but within the same LAN

## ARP: address resolution protocol

- Each host and router has an ARP table in memory
  - IP/MAC address mappings for some LAN nodes:
    < IP address; MAC address; TTL>
  - TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)
  - Not necessarily includes every host and router on the subnet

| IP           | MAC               | TTL      |
|--------------|-------------------|----------|
| 137.196.7.78 | 1A-2F-BB-76-09-AD | 12:45:00 |
| 137.196.7.14 | 58-23-D7-FA-20-89 | 17:52:00 |

 So, what if it doesn't have an entry for a given destination you need?



## ARP protocol (in the same LAN)

- A wants to send datagram to B
  - B's MAC address not in A's ARP table
  - A broadcasts ARP query packet, containing B's IP address
    - Destination MAC address = FF-FF-FF-FF-FF
    - All nodes on LAN receive ARP query
  - B receives ARP packet, replies to A with its (B's) MAC address
    - Response frame sent to A's MAC address (unicast)
  - A caches IP-to-MAC address pair in its ARP table until info is too old
- ARP is "plug-and-play" nodes create their ARP tables without intervention from net administrator
- ARP logically straddles between the link and network layers
  - Encapsulated within a frame, with link-layer addresses in it ...

- A creates IP datagram with IP source A, destination B
  - Needs a MAC but can't be that of B or the local devices won't pick it up and pass it to their network layer
- To get to B, datagram must get to router R
  - A creates link-layer frame with R's MAC address as destination address, frame contains A-to-B IP datagram



• Frame sent from A to R, R gets it, and passes datagram up to IP



- To determine the right interface to use, IP forwarding table
- Pass it to the interface, creating a link layer frame with B's MAC address as destination; the frame has A-to-B IP datagram



• When the frame arrives, the destination passes the datagram up



## Ethernet

- The dominant wired LAN technology
  - Alternatives included token ring, FDDI and ATM
- Some reasons for domination
  - First widely used LAN technology
  - Simpler, cheap
  - Kept up with speed race (higher data rate was the most compelling reason to change to another LAN technology): 10 Mbps – 10 Gbps

Metcalfe's Ethernet sketch (1970s while at Xerox)



## Ethernet: physical topology

- Initially and through the mid 90s, a bus
  - All nodes in same collision domain (can collide with each other)
- Late 90s a move from bus to star with a hub in the center
  - Hub physical-layer device, gets bit, recreates it, boots its energy and drops it on all interfaces
- Both bus and hub-based start, broadcast
- Early 2000s, a switch instead of hub
  - Active, store-and-forward switch in center
  - Each "spoke" runs a (separate) Ethernet
    protocol (nodes do not collide with each other)





## Ethernet frame structure

 Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame type

preamble dest.

- Data (46-1,500B) Carries the datagram
  - If >1,500B fragment, if <46B, has to be padded; all passed on to network layer which uses the length of IP datagram to remove stuffing

source address data load

CRC

- Destination addresses (6B) destination MAC address
  - If adapter receives frame with matching dst address, or with broadcast address FF-FF-FF-FF-FF, it passes data in frame to network layer
  - Otherwise, adapter discards frame

## Ethernet frame structure

- Source address (6B) MAC address of the source
- CRC (4B) Cyclic redundancy check at receiver (drop on error)
- Type (2B) Indicates higher layer protocol for demultiplexing
  - Mostly IP but others possible, e.g., Novell IPX, AppleTalk
  - Also ARP has its own type (0806)
- Preamble (8B)
  - 7B '10101010' followed by 1 byte '10101011' (Start Frame Delimiter)
  - First 7B to wake up and synchronize receiver's and sender clock rates, the SFD or its last 2 bits to announce important things are coming up



#### Ethernet: unreliable, connectionless

- Connectionless No handshaking between sending and receiving NICs, just send what you have
- Unreliable Receiving NIC doesn't send acks or nacks back if CRC check passes or fails
  - Data in dropped frames, gaps, are recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Connectionless and unreliable  $\rightarrow$  a simple and cheap Ethernet
- Not one but many different Ethernet standards
  - Common MAC protocol and frame format
  - Different speeds: 2, 10 and 100 Mbps, 1, 10 and 40 Gbps
  - Different physical layer media: fiber, cable, twisted-pair copper

**10GBASE-T** 

1000BASE-LX

10BASE-2

## Ethernet switches (late 1990s-today)

- Avoid broadcast and collision relay msg to the correct port
- Switches are store-and-forward devices, like routers
  - More complex hardware parallel packet processing and queueing
- If packet is addressed to an unknown address, broadcast to all
- Switch allows a subnet to grow very large, as packet flows are isolated from each other and can happen in parallel
- No special configuration is required on nodes or in switch
  - It's entirely "plug and play"
  - Switch automatically learns MACs of recent senders on each port
- If a port is connected to another switch, then it will relay traffic for many MAC addresses

## Switches avoid collision entirely

- Switch ports have output queues (like a router), so switch will wait to send a packet until the port is free
  - Worst that can happen is that a packet is dropped due to a full queue
- Early Ethernet on bus or hub-based start topologies
  - A broadcast channel needing CSMA/CD to deal with collisions
- Today's Ethernet uses switched-base start topology
  - With a store-and-forward switch
  - Modern switches are full-duplex so a node and a switch can send frames to each other without interference
  - No collisions no need for a MAC protocol
  - Switch isolates links from each other, so easy to mix legacy and new equipment

#### Switches and routers

Network admins sometime have a choice, e.g. connecting departments within a university

Ethernet switch

- Chooses an outbound link using packet's dst MAC address
- Forwarding rules are learned by inspecting traffic
- Redundant links are not allowed
- No configuration required, just "plug and play"
- ARP and DCHP (broadcast) traffic must be sent to all switch ports (on all connected switches)

#### Router

- Chooses an outbound link using packet's dst IP address
- Forwarding rules are decided by IGP and BGP
- Routing algorithm chooses shortest among multiple paths
- Router must be configured to assign its IP addresses, IGP, etc
- Gives adms greater control over where traffic is sent (traffic eng)
- Isolates Ethernet broadcasts

## VLANs (Virtual LANs)

- A switch that supports VLANs can be divide it into multiple virtual switches
  - Let large switches to be flexibly configured
  - Often configured by port, can also assign MAC addresses to VLANs
- Typically used to isolate private subnets for security
- Traffic from one VLAN cannot flow into another VLAN



... operates as *multiple* virtual switches



Electrical Engineering Computer Science (VLAN ports 1-8) (VLAN ports 9-15)

## Multiprotocol label switching (MPLS)

- Initially proposed in mid 90s to improve IP router forwarding
  - Idea, use a fixed-length label rather than shortest prefix matching
- MPLS routers or label-switched routers
  - Exchanged labeled packets over Label Switched Paths (LSPs)
  - MPLS forwarding table distinct from IP forwarding tables
  - Ingress LER is a tunnel entry points, adds the label stack
  - Egress LER removes the label stack and does the classic IP lookup



## MPLS headers

 Labeled packets are tagged with one or more Label Stack Entries (LSEs), MPLS header, inserted between the frame header (link layer) and the IP packet (network)



#### MPLS versus IP paths

- IP routing: path to destination determined by dst address alone
- MPLS forwarding decisions can differ from those of IP
  - Use dst and src addresses to route flows to same dst differently (traffic engineering)
  - Re-route flows quickly if link fails: pre-computed backup paths



Entry router (R4) can use *different* MPLS routes to A based, e.g., on source address

## MPLS signaling

- Modify OSPF, IS-IS link-state flooding protocols to carry info used by MPLS routing,
  - e.g., link bandwidth, amount of "reserved" link bandwidth
  - Entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers



### MPLS forwarding tables

| In label | Out label | Dest | Out i/f |
|----------|-----------|------|---------|
|          | 10        | А    | 0       |
|          | 12        | D    | 0       |
|          | 8         | А    | 1       |

| In label | Out label | Dest | Out i/f |
|----------|-----------|------|---------|
| 10       | 6         | А    | 1       |
| 12       | 9         | D    | 0       |



#### Data center networks

- Google, Microsoft, Amazon, ... building big data centers
  - Housing 10s or 100s of thousands of machines
- A fast and efficient DCN is key
- Much work on design of DCN
  - Topologies
  - Routing
  - Container-based modular data centers
  - Reliability



## A recap of sorts ... visiting www.google.com?



## What happens when visiting <u>www.google.com</u>?



- Connecting laptop needs to get its own IP address, address of first-hop router, address of DNS server: use DHCP
- OS creates a DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet frame broadcast (dest: FF:FF:FF:FF:FF:FF) on LAN, received by router running DHCP server
- Ethernet unpacked to get IP, unpacked to get UDP, unpacked to get DHCP

## Connecting to network (continued)



- DHCP server creates DHCP ACK containing client's IP address, IP address of first-hop router for client, subnet mask, & IP address of DNS server
- Encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- Client receives DHCP ACK

## ARP (before DNS, before HTTP)



- Before sending HTTP request, we need to send a DNS request to get IP address of <u>www.google.com</u>
- Create DNS request, inside UDP segment, inside IP datagram, inside Ethernet frame, but we don't yet have the MAC address of the router to set as the first-hop Ethernet destination
- Client broadcasts ARP query listing the router's IP address. Router replies with its MAC address (on that subnet)



- IP datagram containing DNS query forwarded via switch from client to 1st hop router
- ... from campus network into Comcast network, routed (tables already created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server
- DNS server replies with IP address of www.google.com



## HTTP request/reply



- IP datagram containing request routed to google.com
- Web server replies with HTTP response (incl. web page)
  - IP datagram containing response routed back to client