Optimization for Data Science
Lecture 13: Proximal Gradient
Methods (second part)

Kimon Fountoulakis

School of Computer Science
University of Waterloo

29/10/2019

Outline of this lecture

Proximal mapping

Optimality conditions for composite problems
Proximal gradient method with fixed step-size
Proximal gradient method with line-search

Proof of convergence rate

Composite Optimization
Problems

* We are interested in minimizing

minimize, cp: g2(x) + f(x)

* f(x) is smooth (differentiable)

e 2(x) is convex. This function is not-necessarily smooth.

Modelling Motivation

e Composite problems are very popular in machine
learning because

* frepresents a loss function.
e 2 represents a regularizer, i.e., Hxll%, |1 x1] -

e Different regularizers often represent different prior
information about the optimal solution.

Algorithmic Motivation

 So far we have seen two ways to solve non-smooth
problems:

e Smooth the objective function and apply a gradient-
type method

 Use a sub-gradient method on the non-smooth
objective function

Algorithmic Motivation

e Smoothing makes the problem differentiable, but
iteration complexity of gradient methods takes a hit.

 Sub-gradient methods are very slow and they require a
lot of parameter tuning.

* There exists a very popular class of nhon-smooth
problems for which we can apply a specialized gradient
method without smoothing or using sub-gradients. Also,
the rate is worse than the rate for smooth objective
functions.

Recap: making of gradient
descent for smooth functions

e |et’s try to derive gradient descent for smooth functions
again and based on what we learn we will derive proximal
gradient descent for non-smooth composite problems.

Recap: making of gradient
descent for smooth functions

e Say that we want to minimize a smooth function f.
» We defined gradient descent as x;, | 1= X, — 7 Vi(x,)

* This is equivalent to

Xiy1 -= argmin__p, flx) + Vf(xk)T(x —X;) + Ellx — xkllg

e Why? simply compute the optimality conditions of the above
strongly convex problem: Vf(x,) + L(x —x;) =0

e and solve w.r.t x.

Recap: making of gradient
descent for smooth functions

 |et’s work with thls definition of gradlent descent.

T L 2
Xpyq s=argmin_ ot fOq) + VA (x —x) + = > lx — x5

. _
e
WS &i\/\ nCxae N\ PR e o

(/l’,‘/L (o\ Lai\ 07)

A} o K M%¥\@W Nz Qb@ ‘,

p% g X R 2y "l;i \ % = X\C\\:

Recap: making of gradient
descent for smooth functions
) of ruadion o\ 3(&3\(‘“* Descent

\ T
Foed + DV oo (v xd + 5 %l F oo

Note that the approximation is

X always an over-approximation to /.
‘0 N This can be shown by using the FToC.

10

Recap: making of gradient
descent for smooth functions
9 0y rreddon .\ c&raﬂ\“* Descen®

— —— e

F oo

< . .
INE. 2 ke Grrd & 7 ==y

Note that the approximation is

Xo X, X always an over-approximation to .
This can be shown by using the FToC.

11

Recap: making of gradient
descent for smooth functions
1) Wuwaklion o a1k Desceont

P <D

Note that the approximation is

Xo X, X always an over-approximation to .
This can be shown by using the FToC.

12

Recap: making of gradient
descent for smooth functions

* This means that we can view gradient descent as a
sequence of subproblems:

Xiyq -=argmin_ o, fq) + Vf(xk)T(x —x;) + EHX — ka%

* that are easier to solve than solving the original problem.

* (More generally this is true for many optimization
algorithms)

13

What about composite
problems?

But now we have to minimize g + f, where g is not
necessarily smooth.

This means that we cannot compute V g + V.

We could compute a sub-gradient of g, but as we saw in

previous lectures this does not result in efficient
algorithms.

So what do we do?

14

Proximal Gradient Descent:
Intuitive interpretation

e Simple idea: let’s just add g in the sub-problem of
gradient descent without approximating it.

, L
Xepp = argmin _o, &(ﬁ) + fO)+ V) (x—x) + Ellx - x5

new term

similar to gradient descent for smooth f

 \What are possible issues?
* The sub-problem might not be “easy” to solve anymore.

e This means that we do not have a closed form solution
for this sub-problem like we had for gradient descent

applied only on /.

15

Example

Fortunately, for special cases of g, the sub-problem does have a closed form
solution.

Example: g(x) = A||x||,

Then
(A A
W=7 'fujzf
. A .
[X41]; =40 iflu| <= V]
Y A
kuj+z |fuj§—z

where u = x;, — T Vi(x,).

How do we obtain this? Through the optimality conditions of the sub-problem. (We
did make a similar derivation when we were studying smoothing of the L1-norm).

16

What about non-constant
step-sizes?

* |n this case, the sub-problem simply is:

. 1
Xepp = argmin _o, g2(x) + f(x) + Vf(xk)T(x — X)) + gllx — xk||%
" k
new term

similar to gradient descent for smooth f

* Previously we had:

. L
Xepp = @rgmin_p, &(ﬁ) + fx) + V) (x—x) + Ellx - x5

new term

similar to gradient descent for smooth f

17

Proximal Mapping

* We can generalize the previous technique by using
proximal mapping.

* The proximal mapping or proximal operator of a
convex function g is defined as

proxg(x) = argmin__p, &(u) + EHM — x\l%

18

Proximal Gradient Method

e Using the definition of proximal mapping, proximal
gradient descent can be written as:

xk+1 — prOXakg(Xk — Olk Vf(xk))

 which Is equivalent to

X1 = argmin, g, 80) + —— |l = .+ o V(515
k

1

= argmin__p,, g_(xﬂ) +f(x) + VAx) (x — x) + E”x - xl13
k

new term

‘ similar to gradient descent for smooth fJ

19

Descent Lemma

e LetO < gy < 2/L then

L 1 ,
F(Xk+1) < F(xk) + ”xk+1 — xk”z-
2 ak

20

Armijo Line-Search for
Proximal Gradient

Le us define £(x) := g(x) + f(x;) + V f(xk)T(x — X;)

linearization of fat x,

e Thus function £(x) is a lower approximation to g + f at x;.

e Define F(x) := g(x) + f(x), then this is how £(x) looks like:

\. |
\ﬁx) 1
.
. |
.
I’
.
.]
000000
ooooo {(x)
IS
00000 .Q.
® (v, Flxy))

-5000
~40

Armijo Line-Search for
Proximal Gradient

o Letx(a) := prox (X — aVf(x))

e Start withaguessa =1

* Check if the objective is sufficiently decreased:
« F(x(a)) < F(x) —0(£(x) — ¢(x(a)) for 6 € (0,1)
e |fnot,then half ai.e., & «— a/2

22

Armijo Line-Search:
Intuition

4000 .
3000} \

Q)
2000}

1000} N F(X) -

.
0 0‘
.
.
-1000 } *
&
i)
&
2000} %
<
&
<
3000 *% ((X)
Oy
&
4000 } e
, <
® (vy, Flayg))
5000 : ‘ L
~40 _30 —20 10 0 10 20 30 40

23

Armijo Line-Search:
Intuition

e Say that the proximal gradient suggests that | move from X, (red dot) the direction 7, to the left.

| set o = 1 and this take me to point x;, + f, = 20. Is this point good enough?

4000

3000

2000}

1000

0O

-1000 -

-2000 -

~-3000 |

® (z,, Flxy)) MR
—4000 (g + g, Fxp + L)) Yo .
(xp + tp, b(xp + L))
-5000 A -
-40 -30 -20 -10 0 10 20 30 40

24

Armijo Line-Search:
Intuition

* We measure the decrease in the objective function:
F(x) — F(x, +1).

4000 I T T
o0r \ F(xkx) — F(xkx+tg) |
Q)

2000 / .
1000} > N F(X) .
ol tk Ve |

”

L 2
L 2 N

000000

® (2, F(z))
-4000 (‘1_';‘. f [;‘., I(lL { [/_-))
(g + tp, €(xp + 1))

25

Armijo Line-Search:
Intuition

* We measure the decrease in the approximation to the
objective function: £(x;,) — £(x, +).

0 T T

3000 \ 1(Xk) — U(xk + tk)

),

000 /
O tk

1000

000000

00000 - £(x)

® (ry, [“(.l‘l.-))
—4000 (g + g, Flxp +t)) Ve
(xp + tp, bz + t1))

20

o If F(x,) — F(x, + 1) (purple dashed line) is larger than

Armijo Line-Search:
Intuition

0 (f(xk) — C(x;, + tk))(green solid line), then | stop.

4000 :

3000} \ F(Xk) Xk‘+‘tk

[
2000} /
1000} >
¢ o
ok t k .
-1000}
o
L 4
-2000 |- *e
o
-3000} [(X)
® (z;, F(x)) '..
-4000 (g + tp, Flxp +t)) AR
(xp +tp, b(xp + L))

_500_040 -30 -210 -10 ‘ 10 20 30

27

4000 ;
3000 \ [‘(xk) o [;'(Xk_r_tk)
C
2000} /
1000} %\/ F(X
of bk %,
'S
S
-1000} ¢
IS
@
-2000} *e
&
-3000} [(X)
® (z;, Flxy)) .0.
~4000 |- (g + tp, Fap + tg)) o
(xp + tp, b(zp + L))
5000, ~30 _210 -10 10 20 30

Armijo Line-Search:
Intuition

e Otherwise, | have to decrease a, and try again.

\.
R %X)
aty *,
*
L
&
000000
ooooo ((x)
® (2, Flzp)) R
00000 (xp + aty, F(x, + aty)) ¢
(. + atp, b(xr + aty))

00000
-40

28

Comments on Armijo Line-
Search

* |n case you are curious, Armijo line-search for proximal
gradient is a generalization of Armijo line-search for
gradient descent.

e If you set g(x) = 0, then the procedure reduces to the
same Armijo line-search that you know for gradient
descent.

29

Termination of Armijo line-
search

2(1-6) o
e Any a < T satisfies the termination criterion of

Armijo line-search for proximal gradient descent.

30

How do we terminate
proximal gradient?

e |et’s introduce the gradient mapping

G(x) = l(x —xT) = l()c — prox,,,(x — a Vf(x))).
a a

e where a > 0.

e Use the norm of ||G(x)||,, to terminate proximal
gradient when ||G(x)||, < €.

31

How do we terminate
proximal gradient?

e Whyis ||G(x)||, < € a good metric for termination?

e This is because x* is a stationary point if and only if
G(x*) = 0. (We proved this in the previous lecture).

32

Accelerated Proximal
Gradient

X = ProX, , (yk — oV f(yk))

1+\/1+4t,§
2

lev1 =

f— 1
Ye+1 = X T+ (X — X_1)
lk+1

a;, can be computed by line-search

This method is the same method as the one in Assignment 3 with the
addition of the proximal operator.

33

Iteration Complexity

Smoothing Smoothing
+ + Stochastic Proximal
Gradient Accelerated Sub-Gradient Gradient
Descent Gradient

Non-convex 0 (%) 29 o <$>
() (7))

()
()

Convex

Accelerated
Proximal
Gradient

??

(V%)

D 1 D 1 Go? 1 L 1 L 1
St I — — — — - — — _ _
rongly convex @(56 10g€> @(5elog€> @(= 6) @<510g€> @<\/;log€

e Some constants might be different, but roughly they are of the same order.

34

)

References

 Book: First-order Methods in Optimization by A. Beck

35

