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• Proximal mapping


• Optimality conditions for composite problems


• Proximal gradient method with fixed step-size


• Proximal gradient method with line-search


• Proof of convergence rate

Outline of this lecture
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• We are interested in minimizing 
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minimizex∈ℝn g(x) + f(x)

•  is smooth (differentiable)


•  is convex. This function is not-necessarily smooth.

f(x)

g(x)

Composite Optimization 
Problems



• Composite problems are very popular in machine 
learning because


•  represents a loss function.


•  represents a regularizer, i.e., , .


• Different regularizers often represent different prior 
information about the optimal solution. 

f

g ∥x∥2
2 ∥x∥1
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Modelling Motivation



• So far we have seen two ways to solve non-smooth 
problems:


• Smooth the objective function and apply a gradient-
type method


• Use a sub-gradient method on the non-smooth 
objective function

Algorithmic Motivation
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• Smoothing makes the problem differentiable, but 
iteration complexity of gradient methods takes a hit.


• Sub-gradient methods are very slow and they require a 
lot of parameter tuning.


• There exists a very popular class of non-smooth 
problems for which we can apply a specialized gradient 
method without smoothing or using sub-gradients. Also, 
the rate is worse than the rate for smooth objective 
functions.
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Algorithmic Motivation



Recap: making of gradient 
descent for smooth functions

• Let’s try to derive gradient descent for smooth functions 
again and based on what we learn we will derive proximal 
gradient descent for non-smooth composite problems.
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Recap: making of gradient 
descent for smooth functions
• Say that we want to minimize a smooth function 


• We defined gradient descent as 


• This is equivalent to




• Why? simply compute the optimality conditions of the above 
strongly convex problem: 


• and solve w.r.t . 

f .

xk+1 := xk −
1
L

∇f(xk)

xk+1 := argminx∈ℝn f(xk) + ∇f(xk)T(x − xk) +
L
2

∥x − xk∥2
2

∇f(xk) + L(x − xk) = 0

x
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Recap: making of gradient 
descent for smooth functions
• Let’s work with this definition of gradient descent.

xk+1 := argminx∈ℝn f(xk) + ∇f(xk)T(x − xk) +
L
2

∥x − xk∥2
2
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Recap: making of gradient 
descent for smooth functions
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Note that the approximation is 
always an over-approximation to . 

This can be shown by using the FToC. 
f



Recap: making of gradient 
descent for smooth functions
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Note that the approximation is 
always an over-approximation to . 

This can be shown by using the FToC. 
f



Recap: making of gradient 
descent for smooth functions
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Note that the approximation is 
always an over-approximation to . 

This can be shown by using the FToC. 
f



Recap: making of gradient 
descent for smooth functions
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• This means that we can view gradient descent as a 
sequence of subproblems: 




• that are easier to solve than solving the original problem.


• (More generally this is true for many optimization 
algorithms)  

xk+1 := argminx∈ℝn f(xk) + ∇f(xk)T(x − xk) +
L
2

∥x − xk∥2
2



What about composite 
problems?
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• But now we have to minimize , where  is not 
necessarily smooth. 


• This means that we cannot compute . 


• We could compute a sub-gradient of , but as we saw in 
previous lectures this does not result in efficient 
algorithms.


• So what do we do?

g + f g

∇g + ∇f

g



Proximal Gradient Descent: 
intuitive interpretation

15

xk+1 = argminx∈ℝn g(x)⏟
new term

+ f(xk) + ∇f(xk)T(x − xk) +
L
2

∥x − xk∥2
2

similar to gradient descent for smooth f

• Simple idea: let’s just add  in the sub-problem of 
gradient descent without approximating it.

g

• What are possible issues?


• The sub-problem might not be “easy” to solve anymore.


• This means that we do not have a closed form solution 
for this sub-problem like we had for gradient descent 
applied only on .f



Example
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• Fortunately, for special cases of , the sub-problem does have a closed form 
solution.


• Example: 


• Then


•



• where .


• How do we obtain this? Through the optimality conditions of the sub-problem. (We 
did make a similar derivation when we were studying smoothing of the L1-norm).

g

g(x) = λ∥x∥1

[xk+1]j =

uj − λ
L if uj ≥ λ

L

0 if |uj | ≤ λ
L

uj + λ
L if uj ≤ − λ

L

∀j

u = xk −
λ
L

∇f(xk)



What about non-constant 
step-sizes?
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xk+1 = argminx∈ℝn g(x)⏟
new term

+ f(xk) + ∇f(xk)T(x − xk) +
1

2αk
∥x − xk∥2

2

similar to gradient descent for smooth f

• In this case, the sub-problem simply is:

• Previously we had:

xk+1 = argminx∈ℝn g(x)⏟
new term

+ f(xk) + ∇f(xk)T(x − xk) +
L
2

∥x − xk∥2
2

similar to gradient descent for smooth f
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Proximal Mapping

• We can generalize the previous technique by using 
proximal mapping.


• The proximal mapping or proximal operator of a 
convex function  is defined as g

proxg(x) = argminu∈ℝn g(u) +
1
2

∥u − x∥2
2
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Proximal Gradient Method

• Using the definition of proximal mapping, proximal 
gradient descent can be written as: 




• which is equivalent to 

xk+1 = proxαkg
(xk − αk ∇f(xk))

xk+1 = argminx∈ℝn g(x) +
1

2αk
∥x − xk + αk ∇f(xk)∥2

2

= argminx∈ℝn g(x)⏟
new term

+ f(xk) + ∇f(xk)T(x − xk) +
1

αk2
∥x − xk∥2

2

similar to gradient descent for smooth f
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Descent Lemma

• Let  then 




0 < αk ≤ 2/L

F(xk+1) ≤ F(xk) + ( L
2

−
1
αk ) ∥xk+1 − xk∥2

2.



•
Le us define 


• Thus function  is a lower approximation to  at .


• Define , then this is how  looks like:

ℓ(x) := g(x) + f(xk) + ∇f(xk)T(x − xk)

linearization of f at xk

ℓ(x) g + f xk

F(x) := g(x) + f(x) ℓ(x)

Armĳo Line-Search for 
Proximal Gradient



• Let 


• Start with a guess 


• Check if the objective is sufficiently decreased:


• 


• If not, then half  i.e., 

x(α) := proxαg(xk − α∇f(xk))

α = 1

F(x(α)) ≤ F(xk) − θ (ℓ(xk) − ℓ(x(α))  for θ ∈ (0,1)

α α ← α/2
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Armĳo Line-Search for 
Proximal Gradient
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Armĳo Line-Search: 
Intuition
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Armĳo Line-Search: 
Intuition

• Say that the proximal gradient suggests that I move from  (red dot) the direction  to the left.


• I set  and this take me to point . Is this point good enough?

xk tk

α = 1 xk + tk = 20
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Armĳo Line-Search: 
Intuition

• We measure the decrease in the objective function: 
.F(xk) − F(xk + tk)
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Armĳo Line-Search: 
Intuition

• We measure the decrease in the approximation to the 
objective function: .ℓ(xk) − ℓ(xk + tk)
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Armĳo Line-Search: 
Intuition

• If  (purple dashed line) is larger than 
(green solid line), then I stop.

F(xk) − F(xk + tk)
θ (ℓ(xk) − ℓ(xk + tk))
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Armĳo Line-Search: 
Intuition

• Otherwise, I have to decrease , and try again.α
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Comments on Armĳo Line-
Search

• In case you are curious, Armijo line-search for proximal 
gradient is a generalization of Armijo line-search for 
gradient descent.


• If you set , then the procedure reduces to the 
same Armijo line-search that you know for gradient 
descent.

g(x) = 0
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Termination of Armĳo line-
search

• Any  satisfies the termination criterion of 

Armijo line-search for proximal gradient descent.


α ≤
2(1 − θ)

L
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How do we terminate 
proximal gradient?

• Let’s introduce the gradient mapping 

.


• where .


• Use the norm of , to terminate proximal 
gradient when .

G(x) :=
1
α

(x − x+) =
1
α

(x − proxαg(x − α∇f(x)))

α > 0

∥G(x)∥2
∥G(xk)∥2 ≤ ϵ
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How do we terminate 
proximal gradient?

• Why is  a good metric for termination?


• This is because  is a stationary point if and only if 
. (We proved this in the previous lecture).

∥G(x)∥2 ≤ ϵ

x*
G(x*) = 0
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Accelerated Proximal 
Gradient

• 


• 


• 


•  can be computed by line-search 


• This method is the same method as the one in Assignment 3 with the 
addition of the proximal operator.

xk = proxαkg (yk − αk ∇f(yk))

tk+1 =
1 + 1 + 4t2

k

2

yk+1 = xk +
tk − 1
tk+1

(xk − xk−1)

αk
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Iteration Complexity

Convex

Strongly convex

Smoothing 
+ 

Accelerated  
Gradient

𝒪 (
D

ϵ )

𝒪 ( D
δϵ

log
1
ϵ )

Smoothing 
+ 

Gradient  
Descent

𝒪 ( D
ϵ2 )

𝒪 ( D
δϵ

log
1
ϵ )

Stochastic  
Sub-Gradient

𝒪 ( Gσ2

δ2

1
ϵ )

𝒪 (e
σ2
ϵ )

Proximal  
Gradient

𝒪 ( L
ϵ )

𝒪 ( L
δ

log
1
ϵ )

• Some constants might be different, but roughly they are of the same order.

Non-convex 𝒪 ( D
ϵ2 ) 𝒪 ( 1

ϵ4 ) 𝒪 ( L
ϵ )??

Accelerated 
Proximal  
Gradient

𝒪 ( L
ϵ )

𝒪 ( L
δ

log
1
ϵ )

??



• Book: First-order Methods in Optimization by A. Beck
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