
Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Lecture 4: JavaScript in the Web Browser
CPEN400A - Building Modern Web Applications - Winter 2019-1

Karthik Pattabiraman

The Univerity of British Columbia
Department of Electrical and Computer Engineering

Vancouver, Canada

Thursday October 3, 2019



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

JavaScript in the Browser 2

1 Browsers and the Web Application Model

2 Window Object

3 Event Handling in Modern Browsers

4 Event Propagation in the DOM



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Browser as an OS! 3

Modern Browsers are equivalent to an OS for web applications
Provide core services such as access to the display (DOM,
location bar), and permanent state (cookies, local storage,
history)
Schedule event handlers for different tasks and control the
global ordering of events
Allow network messages to be sent and received from the
server



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Modern Web Application 4

Applications running on web browsers that use the browser’s
facilities

Update the browser’s DOM or shared location bar
Schedule events in the future and register event handlers for
various parts of the web application
Send and receive asynchronous AJAX messages from the web
server

Web applications run on top of the browser OS !



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Browser Sandbox 5

However, web applications are restricted in their behaviour for
security reasons

Cannot write persistent state to the host file system (use
cookies or browser local storage)
Cannot write to parts of the DOM tree that come from other
domains (Same Origin Policy - SOP)
Cannot read cookies belonging to other domains (SOP)
Only allowed to communicate with their domain

Same Origin Policy (SOP)
Restricts which parts of the web application can be
read/written by JavaScript code
Origin = (URL, domain, portNumber)
NOTE: Origin of the script is not important. What is
important is the origin on the document in which script is
embedded



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

JavaScript Two Phase Execution Model 6

Phase 1
All code within the <script></script> tag is executed when
they’re loaded in the order of loading (unless the script tag is
async or deferred)
Some scripts may choose to defer execution or execute
asynchronously. These are executed at the end of phase 1

Phase 2
Waits for events to be triggered and executes handlers
corresponding to the events in order of event execution
(single-threaded model)
Events can be of four kinds:

Load event: After page has finished loading (phase 1)
User events: Mouse clicks, mouse moves, form entry
Timer events: Timeouts, Interval
Networking: Async messages response arrives



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

JavaScript Two Phase Execution Model 6

Phase 1
All code within the <script></script> tag is executed when
they’re loaded in the order of loading (unless the script tag is
async or deferred)
Some scripts may choose to defer execution or execute
asynchronously. These are executed at the end of phase 1

Phase 2
Waits for events to be triggered and executes handlers
corresponding to the events in order of event execution
(single-threaded model)
Events can be of four kinds:

Load event: After page has finished loading (phase 1)
User events: Mouse clicks, mouse moves, form entry
Timer events: Timeouts, Interval
Networking: Async messages response arrives



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Window Object 7

1 Browsers and the Web Application Model

2 Window Object

3 Event Handling in Modern Browsers

4 Event Propagation in the DOM



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Window object 8

Global object that provides a gateway for almost all features of
the web application
Passed to standalone JS functions, and can be accessed by any
function within the webpage
Example Features

DOM: Through the window.document property
URL bar: Through window.location property
Navigator: Browser features, user agent etc.



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

window.alert, confirm and prompt 9

Alert: Simple way to popup a dialog box on the current
window with an OK button

Can display an arbitrary string as message

Prompt: Asks the user to enter a string and returns it
Confirm: Displays a message and waits for user to click OK or
Cancel, and returns a boolean

Example

1 do {

2 var name = prompt ( "What is your name?" ) ;

3 var c o r r e c t = con f i rm ( "You entered: " + name) ;

4 } whi le ( ! c o r r e c t ) ;

5 a l e r t ( "Hello " + name) ;



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

setTimeout and setInterval 10

setTimeout is used to schedule a future event asynchronously
once after a specified no of milliseconds (can be set to 0)

Can specify arguments to event handler
Can be cancelled using the clearTimeout method

setInterval has the same functionality as setTimeout, except
that the event fires repeatedly until clearInterval is invoked

Example of setTimeout

1 var t imeou tHand l e r = f unc t i on ( message ) {

2 re tu rn funct i on ( ) {

3 a l e r t ( message ) ;

4 } ;

5 } ;

6
7 var r e t = setTimeout ( t imeoutHand l e r ( "Hello" ) ,100) ;

8 // [...]

9 i f ( f l a g ) c l e a rT imeou t ( r e t ) ;



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

setTimeout and setInterval 10

setTimeout is used to schedule a future event asynchronously
once after a specified no of milliseconds (can be set to 0)

Can specify arguments to event handler
Can be cancelled using the clearTimeout method

setInterval has the same functionality as setTimeout, except
that the event fires repeatedly until clearInterval is invoked

Example of setInterval

1 var i n t e r v a l H a n d l e r = f unc t i on ( message ) {

2 var i = 0 ;

3 re tu rn funct i on ( ) {

4 a l e r t ( message + ’ ’ + i ) ;

5 i+ = 1 ;

6 }

7 } ;

8 var r e t = s e t I n t e r v a l ( i n t e r v a l H a n d l e r ( "invocation"

) ,1000) ; // [...]

9 i f ( f l a g ) c l e a r I n t e r v a l ( r e t ) ;



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Class Activity 11

Create a new function that invokes another function func a
specified number of times noTimes, asynchronously, each time
after time ms.
The function should pass as an argument to func the number
of times it called func so far.

HINT
You can do it through setTimeout or setInterval

1 f unc t i on i nvokeTimes ( func , noTimes , t ime ) {

2 // ...

3 }

4 var s e tup = f unc t i on ( ) {

5 i nvokeTimes ( f unc t i on ( i ) { a l e r t ( "hello " + i ) ; } , 10 ,

1000 ) ;

6 }

7
8 s e tup ( ) ;



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Event Handling in Modern Browsers 12

1 Browsers and the Web Application Model

2 Window Object

3 Event Handling in Modern Browsers

4 Event Propagation in the DOM



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Event Handling 13

JavaScript code is event-driven, which means that you need to
register event callbacks
Events are of five types in JavaScript

Mouse Events (e.g., mouseclick, mousemove, etc)
Window Events (load, DOMContentLoaded, etc)
Form events (submit, reset, changed etc)
Key events (keydown, keyup, keypress etc)
DOM events (part of DOM3 specification)



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

A cautionary note on event handling 14

There are many browser incompatibilities regarding the types
of events implemented, and the way to register event handlers
(e.g., IE prior to v9 is different from almost all other browsers)
This is complicated by the fact that the DOM3 spec itself is a
moving target for over 10 years
In this class, we will follow DOM2 spec. and assume that the
browser is standard compliant

Focus on set of events that are common (except IE)



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Registering Event Handlers 15

Two ways of registering event handlers
Old method (DOM 1.0): Directly add a onclick or onload
property to the DOM object/window

Disadvantage: Allows only one event handler to be specified.
New handlers must remember to chain the old handler, and
can potentially ‘swallow’ the handler

New method (DOM 2.0): Allows multiple event handlers to be
added to the DOM object/window



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Registering Event handlers: DOM 1.0 16

Use on<event> as the handler for <event>
No caps anywhere. Eg., onload, onmousemove

1 e l ement . o n c l i c k = f unc t i on ( even t ) {

2 t h i s . s t y l e . ba ckg roundco l o r = "#ffffff" ;

3 re tu rn t rue ;

4 }

1 this is bound to the DOM element on which the onclick
handler is defined – can access its properties thro’ this.prop

2 return value of false tells browser not to perform the default
value associated with the property (true otherwise)



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Chaining event handlers in DOM 1.0 method (This is
deprecated now !) 17

If you want to have multiple event handlers in the above
method, you need to remember to chain the earlier handlers
and call them

1 var o l d = e lement . o n c l i c k ;

2 e l ement . o n c l i c k = f unc t i on ( even t ) {

3 t h i s . s t y l e . ba ckg roundco l o r = "#ffffff" ;

4 i f ( o l d ) re tu rn o l d ( even t ) ;

5 re tu rn t rue ;

6 }



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Registering Event handlers: DOM 2.0 18

The DOM 1.0 method is clunky and can be buggy. Also,
difficult to remove event handlers
DOM 2 event handlers

addEventListener for adding a event handler
removeEventListener for removing event handlers
stopPropagation and stopImmediatePropagation for stopping
the propagation of an event (later)



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

addEventListener 19

Used to add an Event handler to an element. Does NOT
overwrite previous handlers

Arg1: Event type for which the handler is active
Arg2: Function to be invoked when event occurs
Arg3: Whether to invoke in the ‘capture’ phase of event
propagation (more later) - false typically

Example

1 var b = document . getE lementBy Id ( "mybutton" ) ;

2 b . addEv en tL i s t e n e r ( "click" , f unc t i on ( ) {

3 a l e r t ( "hello" ) ;

4 } , f a l s e ) ;



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

More on addEventListener 20

Does not overwrite previous handlers, even those set using
onclick, onmouseover etc.
Can be used to register multiple event handlers – invoked in
order of registration (handlers set through DOM 1.0 model
have precedence)

Example

1 var b = document . getE lementBy Id ( "mybutton" ) ;

2 b . addEv en tL i s t e n e r ( "click" , f unc t i on ( ) {

3 a l e r t ( "hello" ) ;

4 } , f a l s e ) ;

5 b . addEv en tL i s t e n e r ( "click" , f unc t i on ( ) {

6 a l e r t ( "world" ) ;

7 } , f a l s e ) ;



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

removeEventListener 21

Used to remove the event handler set by addEventListener
functions, with the same arguments

No error even if the function was not set as event handler

Example

1 var hand l eMouse c l i c k = f unc t i on ( ) {

2 a l e r t ( "clicked" ) ;

3 } ;

4 var b = document . getE lementBy Id ( "mybutton" )

5 b . addEv en tL i s t e n e r ( "click" , hand leMouseCl i ck ,

f a l s e ) ;

6 b . r emoveEven tL i s t en e r ( "click" , hand leMouseCl i ck ,

f a l s e ) ;



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Event Handler Context 22

Invoked in the context of the element in which it is set (this is
bound to the target)
Single argument that takes the event object as a parameter –
different events have different properties, with info about the
event itself
Return value is discarded – not important
Can access variables in the scope in which it is defined, as any
other JS function

Can support closures within Event Handlers



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Class Activity 23

Write a handler for the click property of the button in the
example earlier that displays a message (str1 + str2) using the
alert feature
str1 is determined at runtime when setting the event handler
for the button b, and should not be stored in the global context
str2 is determined based on the event target at the time of its
invocation e.g., event.target. This may be different from the
button b (later why).



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Event Propagation in the DOM 24

1 Browsers and the Web Application Model

2 Window Object

3 Event Handling in Modern Browsers

4 Event Propagation in the DOM



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Event Propagation 25

Events triggered on an element propagate through the DOM
tree in 2 consecutive phases

Capture phase: Event is triggered on the topmost element of
the DOM and propagates down to the event target element
Bubble phase: Event starts from the event target element and
‘bubbles up’ the DOM tree to the top

Events may therefore trigger handlers on elements different
from their targets



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Capture and Bubble Phases 26



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Event Propagation Setup 27

To associate an event handler with the capture phase of event
propagation, set the third parameter of addEventListener to
true

Example

1 var d i v1 = getE lementBy Id ( "one" ) ;

2 d i v1 . a ddEv en tL i s t e n e r ( "click" , hand l e r , t rue ) ;

The default way of triggering event handlers is during the
bubble phase (3rd argument is false)



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Capture and Bubble Phases 28

1 var d i v1 = getElementByID ( "one" ) ;

2 d i v1 . a ddEv en tL i s t e n e r ( "click" , hand l e r1 , t rue ) ;

3 var d i v2 = getElementByID ( "two" ) ;

4 d i v2 . a ddEv en tL i s t e n e r ( "click" , hand l e r2 , t rue ) ;

Capture Phase
Assume that the div element ‘two’ is clicked.
handler1 is invoked before handler2 as both are registered
during the capture phase.

Bubble Phase
Assume that the div element ‘two’ is clicked.
handler2 is invoked before handler1 as they are both registered
during the bubble phase.



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Stopping Event Propagation 29

In the prior example, suppose handler1 and handler2 are
registered in the capture phase

Stopping Event Propagation

1 var hand l e r 1 = f unc t i on ( c l i c k E v e n t ) {

2 c l i c k E v e n t . s t opP ropaga t i on ( ) ;

3 }

Then handler2 will never be invoked as the event will not be
sent to div2 in the capture phase



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

stopPropagation, preventDefault and
stopImmediatePropagation 30

An event handler can stop the propagation of an event
through the capture/bubble phase using the
event.stopPropagation function

Other handlers registered on the element are still invoked
however

To prevent other handlers on the element from being invoked
and its propagation, use event.stopImmediatePropagation
To prevent the browser’s default action, call the method
event.preventDefault



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Class Activity 31

Consider the sample code given in the Github. In what order
are the messages in the event handler functions displayed ?
If you wanted to stop the event propagation in the bubble
phase beyond div3, how will you do it ?



Browsers and the Web Application Model Window Object Event Handling in Modern Browsers Event Propagation in the DOM

Table of Contents 32

1 Browsers and the Web Application Model

2 Window Object

3 Event Handling in Modern Browsers

4 Event Propagation in the DOM


