
DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Lecture 5: DOM Manipulation
CPEN400A - Building Modern Web Applications - Winter 2019-1

Karthik Pattabiraman

The Univerity of British Columbia
Department of Electrical and Computer Engineering
Vancouver, Canada

Tuesday October 8, 2019

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Recap: Last Lecture 2

Window Object
Timeouts and Intervals
Event Handling
Event Propagation through DOM

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

DOM: Recap 3

1 DOM: Recap

2 Selecting DOM elements

3 DOM Traversal

4 Modifying DOM Elements

5 Adding and removing nodes

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

DOM: Recap 4

Hierarchical representation of the contents of a web page –
initialized with static HTML
Can be manipulated from within the JavaScript code (both
reading and writing)
Allows information sharing among multiple components of web
application

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

DOM as an evolving entity 5

DOM is highly dynamic!

S 2S 2

S 0S 0

S 1S 1

S …S … S NS N

S 4S 4

S 3S 3

S 5S 5
User Input / User Action / Server Side

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Why Study DOM Interactions? 6

Needed for JS code to have any effect on webpage (without
reloading the page)
Uniform API/interface to access DOM from JS
Does not depend on specific browser platform

NOTE
We’ll be using the native DOM APIs for many of the tasks in
this lecture
Though many of these can be simplified using frameworks such
as jQuery, it is important to know what’s “under the hood”
We assume a standards compliant browser !

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Selecting DOM elements 7

1 DOM: Recap

2 Selecting DOM elements

3 DOM Traversal

4 Modifying DOM Elements

5 Adding and removing nodes

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Motivation: Selecting Elements 8

You can access the DOM from the object window.document
and traverse it to any node
However, this is slow – often you only need to manipulate
specific nodes in the DOM
Further, navigating to nodes this way can be error prone and
fragile

Will no longer work if DOM structure changes
DOM structure changes from one browser to another

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Methods to Select DOM Elements 9

With a specified id
With a specified tag name
With a specified class
With generalized CSS selector

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Method 1: getElementById 10

Used to retrieve a single element from DOM
IDs are unique in the DOM (or at least must be)
Returns null if no such element is found

Example

1 var name = "Section1" ;
2 var i d = document . getE lementBy Id (name) ;
3 i f (i d == nu l l)
4 throw new E r r o r ("No element found: " + name) ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Method 2: getElementsByTagName 11

Retrieves multiple elements matching a given tag name
(‘type’) in the DOM
Returns a read-only array-like object (empty if no such
elements exist in the document)

Example: Hide all images in the document

1 var imgs = document . getElementsByTagName ("img") ;
2 f o r (var i =0; i<imgs . l e n g t h ; i++) {
3 imgs [i] . d i s p l a y = "none" ;
4 }

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Method 3: getElementsByClassName 12

Can also retrieve elements that belong to a specific CSS class
More than one element can belong to a CSS class

Example

1 var warn ings = document . getElementsByClassName ("
warning") ;

2 i f (warn ings . l e n g t h > 0) {
3 // do something with the warnings list here
4 }

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Important point: Live Lists 13

Both getElementsByClassName and getElementsByTagName
return live lists

List can change after it is returned by the function if new
elements are added to the document
List cannot be changed by JavaScript code adding to it or
removing from it directly though

Make a copy if you’re iterating thro’ the lists

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Selecting elements by CSS selector 14

Can also select elements using generalized CSS selectors using
querySelectorAll() method

Specify a selector query as argument
Query results are not “live” (unlike earlier)
Can subsume all the other methods

querySelector() returns the first element matching the CSS
query string, null otherwise

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

CSS selector syntax: Examples (Recap) 15

1 "#nav" // Any element with id=nav
2
3 "div" // Any <div > element
4
5 ".warning" // Any element with "warning" class
6
7 "#log span" // Any descendant of id="log"
8
9 "#log > span" // Any span child element of id="log"

10
11 "body >h1:first -child" // first <h1 > child of <body >
12
13 "div , #log" // All div elements , element with id="log"

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Invocation on DOM subtrees 16

All of the above methods can also be invoked on DOM
elements not just the document

Search is confined to subtree rooted at element

Example: Assume element with id=”log” exists

1 var l o g = document . getE lementBy Id ("log") ;
2 var e r r o r = l og . getElementsByClassName ("error") ;
3 i f (e r r o r . l e n g t h ==0) { . . . }

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Class Activity 17

Assume the page contains a div element with id id, which
contains a series of images (img nodes).
Write a function that takes two arguments, id and interval. At
each interval, the images must be “rotated”, i.e., image0 will
become image1, image1 will become image2, etc.

1 f unc t i on changeImages (id , i n t e r v a l) {
2
3 }

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

DOM Traversal 18

1 DOM: Recap

2 Selecting DOM elements

3 DOM Traversal

4 Modifying DOM Elements

5 Adding and removing nodes

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Traversing the DOM 19

Since the DOM is just a tree, you can walk it the way you’d do
with any other tree

Typically using recursion
Every browser has minor variations in implementing the DOM,
so should not be sensitive to such changes

Traversing DOM this way can be fragile

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Before accessing or manipulating the DOM... 20

Problem
When your JS code executes, the page might not have finished
loading

⇒The DOM tree might not be fully instanciated / might
change!

window.onload
Event that gets fired when the DOM is fully loaded (see
previous lecture for more information on events)
Like any other event – you specify a callback function
Your DOM manipulation code should go inside that function

1 // DOM Level 1 way shown below -- not recommended !. How to
do it with DOM Level 2?

2 window . on load = f unc t i on () { /* Access the DOM here ... */ }

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Properties for DOM Traversal 21

parentNode
Parent node of this one, or null

childNodes
A read only array-like object containing all the (live) child nodes of
this one

firstChild, lastChild
The first and lastChild of a node, or null if it has no children

nextSibling, previousSibling

The next and previous siblings of a node (in the order in which they
appear in the document)

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Other node properties 22

nodeType: ‘kind of node’
Document nodes: 9
Element nodes: 1
Text nodes: 3
Comment node: 8

nodeValue
Textual content of Text of comment node

nodeName
Tag name of a node, converted to upper-case

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Example: Find a Text Node 23

We want to find the DOM node that has a certain piece of
text, say “text”
Return true if text is found, false otherwise
We need to recursively walk the DOM looking for the text in
all text nodes

1 f unc t i on s e a r c h (node , t e x t) {
2 /* ... */
3 } ;
4
5 var r e s u l t = s e a r ch (window . document , "Hello world!") ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Solution to Exercise 24

1 f unc t i on s e a r c h (node , t e x t) {
2 var found = f a l s e ;
3 i f (node . nodeType==3) {
4 i f (node . nodeValue === t e x t) found = t rue ;
5 } e l s e { // textNodes cannot have children
6 var cn = node . ch i l dNode s ;
7 i f (cn) {
8 f o r (var i =0; i < cn . l e n g t h ; i++) {
9 found = found | | s e a r c h (cn [i] , t e x t) ;

10 }
11 }
12 }
13 re tu rn found ;
14 } ;
15
16 var r e s u l t = s e a r ch (window . document , "Hello world!") ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Class Activity 25

Write a function that will traverse the DOM tree rooted at a
node with a specific ‘id’, and checks if any of its sibling nodes
and itself in the document is a text node, and if so,
concatenates their text content and returns it.
Can you generalize it so that it works for the entire subtree
rooted at the sibling nodes ?

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Modifying DOM Elements 26

1 DOM: Recap

2 Selecting DOM elements

3 DOM Traversal

4 Modifying DOM Elements

5 Adding and removing nodes

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Modifying DOM elements 27

DOM elements are also JavaScript Objects (in most browsers)
and consequently can have their properties read and written to

Can extend DOM elements by modifying their prototype
objects
Can add fields to the elements for keeping track of state (E.g.,
visited node during traversals)
Can modify HTML attributes of the node such as width etc. –
changes reflected in browser display

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Element Interface 28

It is bad practice to modify the Node object directly, so
instead JavaScript exposes an Element interface. Objects that
implement the Element interface can be modified
Hierarchy of Element objects e.g., HTMLTextElement,
HTMLDivElement
Element object derives from Node object and has access to its
properties

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Example: Changing visible elements of a node 29

Assume that you want to change the URL of an image object
in the DOM with id=”myimage” after a 5 second delay to
“newImage.jpg”

1 var myImage = document . getE lementById ("myimage") ;
2 setTimeout (f unc t i on () {
3 myImage . s r c ="newImage.jpg" ;
4 } , 5000) ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Example: Extending DOM element’s prototype 30

Let’s add a new print method to Node that prints the text to
console if it’s a text/comment node

This may break some frameworks, so proceed with caution !

1 Element . p r o t o t yp e . p r i n t = f unc t i on () {
2 c on s o l e . l o g (t h i s) ;
3 }

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Example: Adding new attributes to DOM elements 31

You can also add new attributes to DOM nodes, but these will
not be rendered by the web browser (unless they’re HTML
attributes)

Caution: may break frameworks such as jQuery !

1 var e = document . getE lementBy Id ("myelement") ;
2 e . a c c e s s ed = t rue ;
3 // accessed is a non -standard HTML attribute

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Accessing the raw HTML of a node 32

You can retrieve the raw HTML of a DOM node using it’s
innerHTML property

Can modify it from within JavaScript code, though this is
considered bad practice and is deprecated

1 // HTML: <p id="myP">I am a paragraph .</p>
2 // JS code:
3 var e = document . getE lementBy Id ("myP") ;
4 c on s o l e . l o g (e . innerHTML) ;
5 e . innerHTML = "Don’t do this !" ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

document.write 33

This also deprecated
Quick and dirty method to insert a string into the document
at the location of the script that invoked it while parsing the
document
Cannot be used within callback functions or event handlers –
will replace the page’s DOM

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Class Activity 34

Add a field to each DOM element of type div that keeps track
of how many times the div is accessed through the
document.getElementById method, and make sure to initialize
the value of this field for all div’s in the document to 0 when
the document is initially loaded.

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Adding and removing nodes 35

1 DOM: Recap

2 Selecting DOM elements

3 DOM Traversal

4 Modifying DOM Elements

5 Adding and removing nodes

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Creating New and Copying Existing DOM Nodes 36

Creating New DOM Nodes

Using either document.createElement(“element”)
OR document.createTextNode(“text content”)

1 var newNode = document . c reateTextNode ("hello") ;
2 var e lNode = document . c r e a t eE l emen t ("h1") ;

Copying Existing DOM Nodes: use cloneNode

Single argument can be true or false
True: deep copy (recursively copy all descendants)

new node can be inserted into a different document

1 var e x i s t i n gNode = document . ge tE lementBy id ("my") ;
2 var newNode = ex i s t i n gNode . c loneNode (t rue) ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Inserting Nodes 37

appendChild
Adds a new node as a child of the node it is invoked on. node
becomes lastChild

insertBefore
Similar, except that it inserts the node before the one that is
specified as the second argument (lastChild if it’s null)

1 var s = document . getElementByID ("my") ;
2 s . appendCh i ld (newNode) ;
3 s . i n s e r t B e f o r e (newNode , s . f i r s t C h i l d) ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Removing and replacing nodes 38

Removing a node n: removeChild

1 n . parentNode . r emoveCh i ld (n) ;

Replacing a node n with a new node: replaceChild

1 n . parentNode . r e p l a c e C h i l d (
2 document . c reateTextNode ("[redacted]") ,
3 n) ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

Class Activity 39

Class Activity
Write a function that takes a node ’n’ and an id of ’id’, and adds a
div as the parent of node n. The div’s Id should be ’id’, and the
parent of the div should be the parent of ’n’.

1 // function to replace a node n by making it a child of a
new "div" element with id = "id"

2 f unc t i on newdiv (n , i d) {
3
4 } ;

DOM: Recap Selecting DOM elements DOM Traversal Modifying DOM Elements Adding and removing nodes

1 DOM: Recap

2 Selecting DOM elements

3 DOM Traversal

4 Modifying DOM Elements

5 Adding and removing nodes

	DOM: Recap
	Selecting DOM elements
	DOM Traversal
	Modifying DOM Elements
	Adding and removing nodes

