Lecture 7: JavaScript on the Server: Node.js
CPENA400A - Building Modern Web Applications - Winter 2018-1

The Univerity of British Columbia oce (E:Lencqtprﬁa;rand uBC
Department of Electrical and Computer Engineering ‘ Engineering W

Vancouver, Canada

Tuesday October 22, 2018

Server-side Javascript

Server-side Javascript

€ Server-side Javascript

Server-side Javascript

History of Server-side JS

@ JavaScript evolved primarily on the client-side in the web
browser

@ However, JavaScript began to be used as a server side
language starting in 2008-2009

e Rhino: JavaScript parser and interpreter written in Java

o Node.js: V8 JavaScript engine in Chrome (standalone), written
in C4+—+

Server-side Javascript

Server-Side JS: Advantages

@ Same language for both client and server

o Eases software maintenance tasks
o Eases movement of code from server to client

@ Much easier to exchange data between client and server, and
between server and NoSQL DBs

o Native support for JSON objects in both

@ Much more scalable than traditional solutions
e Due to use of asynchronous methods everywhere

Server-side Javascript

Comparison with Traditional Solutions

@ Traditional solutions on the server tend to spawn a new
thread for each client request

o Leads to proliferation of threads
e No control over thread scheduling
o Overhead of thread creation and context switches

@ Server-side JS: Single-threaded nature of JS makes it easy to
write code

e Scalability achieved by asynchronous calls
o Composition with libraries is straightforward

Server-side Javascript

Node.js Features

@ Written in C4++ and very fast

@ Provides access to low-level UNIX APIs

@ Almost all function calls are asynchronous

o File systems
o Network calls

@ Module system to manage dependencies
o Centralized package manager for modules

@ Implements all standared ECMAScripth constructors,
properties, functions and globals

Server-side Javascript

Node.js Example

CO~NO O~ WN

console.log("Hello"); // Same as before
setTimeout(function() { // Same as before
console.log("World") }, 1000);

// New stuff - can’t do this in client-side JavaScript
var fs = require("fs"); // Load file system object
var contents = fs.readFilesync(fileName);

console.log(contents);

Node.js Modules

Node.js Modules

© Node.js Modules

Node.js Modules

@ In Node.js, you use modules to package functionality together

@ Use the module.exports keyword to export a function or object
as part of a module

@ Use the require keyword to import a module and its
associated functions or objects

Node.js Modules

Exporting Functions

@ Can be used to create one's own modules

Calculator.js

function sum(a, b) {
return a + b;
}

// This exports the sum function
module. exports.sum = sum;

1
2
3
4
5
6

Node.js Modules

Exporting Objects (Constructors)

@ Can also export entire objects through the module.exports —
module is optional below

Shapes.js

1 wvar Point = function(x, y) {
2 this.x = x; this.y = y;

3 };

4

5 module. exports = Point;

Node.js Modules

Using modules: require

@ Used to express dependency on a certain module’s
functionality

Shapes.js

// Imports the Calculator module
var calculator = require("Calculator.js");
calculator .sum(10, 20);

// Imports the shapes module
var Point = require("Shapes.js");
var p = new Point(1, 2);

~NOoO Ok, OWN R

Node.js Modules

Points to Note

@ Need to provide the full path of the module to the requires
function

@ Need to check the value of requires. if it's undefined, then
module was not found.

@ Only functions/objects that are exported using export are
visible in the line that calls require

Events

Events

Event Streams

@ Node.js code can define events and monitor for the occurrence
of events on a stream (e.g., network connection, file etc).

o Associate callback functions to events using the ‘on()’ or
‘addListener()" functions

@ Trigger by calling the ‘emit’ function

Events

@ Refer to specific points in the execution

o Example: exit, before a node process exists
o Example: data, when data is available on connection
o Example: end when a connection is closed

@ Can be defined by the application and event registers can be
added on streams

@ Event can be triggered by the streams

var EventEmitter = require(’events’).EventEmitter;
if (! EventEmitter) process.exit(1);

var myEmitter = new EventEmitter();

var connection = function(id) { /* ... x/ };
var message = function(msg) { /* ... x/ };
// Add event handlers
myEmitter.on("connection", connection);
myEmitter.on("message", message);

// Emit the events
myEmitter.emit("connection", 100);
myEmitter.emit("message", "hello");

HOOWONOOITDEWNHE

= =

Events

Class Activity

Write a function that takes an event stream and an array of strings
as arguments, and counts the number of occurrences of each string
in the stream. You should use EventEmitter.on for monitoring the
stream, i.e., you should not directly scan the stream for the strings.
The function should return a function that retrieves the count of
each string.

File handling in Node

@ Node.js supports two ways to read/write files

e Asynchronous reads and writes
e Synchronous reads and writes

@ The asynchronous methods require callback functions to be
specified and are more scalable

@ Synchronous is similar to regular reads and writes in other
languages

Synchronized Reads and Writes

o readFileSync and writeFileSync to read/write files

synchronously (operations block JS)

@ Not suitable for reading/writing large files
o Can lead to large performance delays

1
2

var f= fs.readFileSync(fileName);
var f = fs.writeFileSync(fineName,

data);

Asynchronously reading a file

=
cCLwVwoo~NoOoTh~WNH

= =
N =

var fs = require("fs"); // Filesystem module in node.js
var length = 0;
var fileName = "sample.txt";

fs.readFile(fileName, function(err, buf) {

if (err) {

console.log("Error in reading file " + err;
} else {

length = buf.length;

console.log("Number of characters read = " 4+ length);
}

o)

Asynchronous Reads using Streams

@ Asynchronous reads allow us to overlap computation with
reads as long as we don’t depend on the data being read

o But what if we want to start processing a file as it's being read
(in chunks or blocks at a time).
o We need to read files as event streams: fs.createReadStream

@ Three types of events on files

o data: There's data available to be read
o end: The end of the file was reached
e error: There was an error in reading the data

Example of Using Streams

=
CLwVwoo~NoolTh~WNH

—
| —

== = ==
DO1TPhWDN

—
~

var fs = require(’fs’);
var length = 0;
var fileName = "sample.txt";
var readStream = fs.createReadStream (fileName) ;;
readStream .on("data", function(blob) {
console.log("Read " + blob.length);
length 4= blob.length;
b
readStream .on("end", function() {
console.log("Total number of chars read = " 4+ length);
b
readStream .on("error", function () {
console.log("Error occurred when reading from file " +
fileName) ;

o)

Asynchronous Writes

@ Like reads, writes can also be asynchronous. Just call
fs.writeFile with the callback function

1 fs.writeFile(fileName, data, function(err) {

2 if (! err)

3 console.log("Finished writing data");

4 else

5 console.log("Error writing to " 4 fileName);
6 };

Weriteable Stream

@ Like readStreams, we can define writeStreams and write data
to them in blobs

o Same events as before

o Useful when combined with readableStreams to avoid buffering
in memory

o Need to call end() when the writing is completed

Example: Copying one file to another

—
LW ~NOoOOTr~WNH

—
| —

= = =
E-NCV N \O]

var fs = require("fs");
var readStream = fs.createReadStream("sample.txt");
var writeStream = fs.createWriteStream ("sample-copy.txt");

readStream .on("data", function(blob) {
console.log("Read " + blob.length);
writeStream . write(blob);

o)

readStream .on("end", function() {
console.log("End of stream");
writeStream .end () ;

o)

Alternate method: Using Pipe

CO~NO O~ WN

var fs = require("fs");

// Open the read and write streams
var readStream = fs.createReadStream("sample.txt");
var writeStream = fs.createWriteStream ("sample-copy.txt");

// Copies contents of read stream to write stream
readStream . pipe(writeStream);

Class Activity

@ Write a function that searches for a given string in a large text
file in node.js. The file should be read using streams and
asynchronous 1/0, and should not be buffered in memory all
at once (as it's too large).

@ NOTE: You may get multiple calls to the callback function as
file data comes in chunks. Your method must search between
chunks.

Network and Http Server

BC

Network and Http Server 2

29

© Network and Http Server

Network and Http Server

Network Server

@ Node.js has built in modules for servers

e ‘net’ module for general-purpose servers
e ‘http’ module for http servers

@ To create a http server

e new http.Server
o createServer(foo): foo is called when a request arrives, with
request & response parameters

Method 1: Handling Http connections

Network and Http Server

—
CLVWwoo~NOoOoTh~,WNHRH

[y
| —

= =
W N

var http = require(’http’);

// Create a simple function to serve a request

var serveRequest = function(request, response) {
console.log(request.headers);
response.write("Welcome to node.js");
response.end();

+

// Start the server on the port and setup response
var port = 8080;

var server = http.createServer(serveRequest);
server . listen (port);

Network and Http Server

Method 2: Using Streams

1 wvar http = require(’http’);

2

3 // Create a simple function to serve a request

4 var serveRequest = function(request, response) {
5 console.log("Received request " + request);

6 response.writeHeader (200, { "Content-type":"text/htm"});
I response.write ("Received: " 4+ request.url);

8 response .end () ;

9 I}

10

11 // Start the server on the port and setup response
12 var port = 8080;

13 var server = http.createServer();

14 server.on("request", serveRequest);

15 server.listen(port);

Network and Http Server

BC

Inside serveRequest &

33

@ Both request and response are streams

@ You can add listeners on both request and response as you do
on streams

o Call end on response when you're done
@ Can retrieve the headers and url of request

e request.url
@ request.headers

Network and Http Server

BC

AJAX Server v

@ Let's write a simple AJAX server for the AJAX client we
wrote earlier

o If the client requests a JS or html file, serve it from the
“ /client” directory

@ If the client sends a message with the prefix ‘hello-', send back
a response ‘world-" with the same suffix as that of the request

o Add a delay of 3000 for each request

Network and Http Server

AJAX Server - Solution UBC

1 var serveRequest = function(request, response) {
2 if (request.url.startsWith("/hello")) {
3 // If it’s an AJAX request, return world
4 console.log("Received " 4+ request.url);
5 setTimeout(function () {
6 var count = request.url.split("-")[1];
7 response.write("world-" 4 count);
8 response .statusCode = 200;
9 response .end () ;
10 }, 3000); // delay of 3 seconds
11 }
v

Network and Http Server

AJAX Server - Solution

1 else if (request.url.endsWith(".html") ||
request.url.endsWith(".js")) {

2 // If it’s a HTML or JS file, retrieve the

file in the request

3 response.statusCode = 200;

4 var fileName = path 4+ request.url;

5 var rs = fs.createReadStream (fileName);

6 s.on("error", function(error) {

7 console.log(error);

8 response . write ("Unable to read file : " +

fileName);

9 response.statusCode = 404;

10 1)

11 rs.on("data", function(data) {

12 response . write(data);

13 1)

14 rs.on("end", function() {

15 response .end () ;

16 1)

17 }

Network and Http Server

AJAX Server - Solution

1 } else {
2 response.write ("Unknown request " 4 request.
url);
3 response.statusCode = 404;
4 response.end();
5 }
6 };
7
8 // Start the server on the port and setup response
9 var port = 8080;
10 wvar server = http.createServer(serveRequest);
11 server.listen (port);
12 console.log("Starting server on port " 4 port);
v

Network and Http Server

BC

Class Activity B

@ Extend the AJAX server application to log the set of all
requests received from the client to a text file. The logging
should be done asynchronously and right after the request is
received. You should also be able to handle connections from
more than 1 client (HINT: Use a separate text file for each

client).

Network and Http Server

BC

37

Table of Contents Usc

€ Server-side Javascript

© Node.js Modules

© Network and Http Server

