
Web Databases (SQL and NoSQL)

Lecture 10 (CPEN 400A)
Karthik Pattabiraman

Based on CS498RK at UIUC (used with permission),
and the MongoDB tutorial (docs.mongodb.)

1

Outline

• What’s a Database ?

• Relational Databases (SQL-based)

• Non-traditional Databases (NoSQL)

• MongoDB Primer

2

What’s a Database ?
• In its simplest form, it’s a collection of data
– Allows applications to modify/access data through

standard interfaces
– Separate data storage from logical organization

• Many types of databases
– Hierarchical
– Object oriented
– Relational
– Document-based

3

History of Databases

• 1960s: Hierarchical databases

• 1970s and 80s: Relational Databases

• 1990s: OO Databases

• 2000s: Key-value stores (e.g., Cassandra)

• 2000s: Document stores (e.g., MongoDB)

4

Outline

• What’s a Database ?

• Relational Databases (SQL-based)

• Non-traditional Databases (NoSQL)

• MongoDB Primer

5

Relational Database

• Stores the data in the form of tables
(Relations) to map one kind of data to another

• Why tables ?
– Separate data storage from logical view of data
– Easy to express relationships between data
– Aggregate data from multiple tables on demand

(table joins)
– Allow declarative queries to be executed

6

Example of a Table
• Much like a spreadsheet, except the columns

are of fixed type and rows are identified by a
unique key (known as primary key)

Source:
http://archive.oreilly.com/pub/a/ruby/excerpts/ruby-
learning-rails/intro-ruby-relational-db.html 7

Database schema

• A logical representation of the tables’
structure listing each column name and type

Column Name Type
id Integer
given_name String
middle_name String
family_name String
date_of_birth Date
grade_point_average Floating Point
start_date Date

8

Multiple Unconnected Tables

Source:
http://archive.oreilly.com/pub/a/ruby/excerpts/ruby-
learning-rails/intro-ruby-relational-db.html

9

Connected Tables

• The problem with having multiple
unconnected tables is that it’s difficult to tell if
the same record is present in both tables
– Solution 1 (Ugly): Duplicate the relevant data in

each table. Complicates data management,
updates and need to anticipate queries in advance

– Solution 2 (Preferred): Keep a pointer (foreign
key) to the other table so that you can access the
data by following the pointer. No need to
anticipate queries in advance, easy to modify

10

Connected Tables

Each table has what is known as primary key to uniquely
identify records in it.

Tables keep foreign keys to link to records in other tables. A
foreign key is the primary key of the table being linked to.

Source:
http://archive.oreilly.com/pub/a/ruby/excerpts/ruby-
learning-rails/intro-ruby-relational-db.html

11

Table Joins

• Can be used to combine information from
multiple tables together (e.g., through SQL)
– Produces a single table containing the information

in both tables, without duplication
– Joins can involve more than one table

• For example, we can produce a single join
table having the award name and the student
details from the previous slide

12

Example of a Join in SQL

• SELECT * from Employees, Departments
where employee.deptID=department.deptID

13

The problem with Joins

• Joins are expensive as they need to straddle
multiple tables

• Combination of fields from different tables
can result in losing cache locality

• Join performance is poor for large tables,
though databases are very good at optimizing
them (and there are tricks for doing so)
– Will not cover these in this course

14

SQL supports Transactions

• Transaction is a sequence of operations which
are executed all at once or not at all
(Atomicity)

• If failures occur, roll-back to the beginning
• Example: Transfer $1000 from Accts. A to B
– Step 1: Locate Account A and check balance
– Step 2: Subtract 1000 dollars from Acct A
– Step 3: Credit 1000 dollars to Acct B

15

SQL Databases have ACID Semantics

16

Consistency

• Can check one or more constraints on the
resulting data, and abort if not satisfied

17

Isolation

• Transactions are isolated from one another

18

Durability

• Transactions are permanent when committed

19

ACID: Pros and Cons

• Pros
– Simplifies reasoning about actions of the system
– Guarantees correctness in presence of failures

• Cons
– Guarantees come with huge performance cost
– Cannot guarantee availability when network fails
• This is due to something called the CAP theorem

20

Class Activity

• Consider the following transactions T1 and T2
which execute on a bank account database.
Which of the four ACID rules, if any, (Atomicity,
Consistency, Isolation, Durability) are violated ?

• Assume initial balance is $100. T1 attempts to
deposit $900 to the account. At the same time,
T2 checks if the account balance >= 500 and
returns true. However, T1 aborts and the account
balance becomes $100 again.

21

Outline

• What’s a Database ?

• Relational Databases (SQL-based)

• Non-traditional Databases (NoSQL)

• MongoDB Primer

22

NoSQL Databases

• Do not perform or natively support Table joins
– Are much more scalable and failure tolerant
– Must do joins explicitly using program code

• Do not typically support ACID semantics
– So data may be inconsistent or out of sync

(provide what is known as eventual consistency)
– When failures occur, data may be lost or incorrect

23

CAP Theorem [Brewer’99]

• You can achieve only two of the following
three properties in any database system

24

CAP theorem continued..

• During a network partition, a system must
choose either consistency or availability for it
to work through the partition
– Traditional SQL-based databases choose

consistency and may hence not be available
– NoSQL databases choose availability and hence

may not be consistent
– In web applications, availability often trumps

consistency

25

Example of Network Partitioning

26

Eventual Consistency

• NoSQL databases provide a guarantee that
they will eventually be consistent (e.g., when
the network partition heals)
– Eventually can be a very long time ….
– Consistent does not mean correct….

27

SQL Vs NoSQL - 1

28

SQL Vs. NoSQL - 2

29

SQL Vs. NoSQL - 3

30

SQL Vs. NoSQL - 4

31

Class Activity

• For each of the following scenarios, will you
use a traditional database or non-SQL
database. Justify your answer using CAP thrm.
– Online photo gallery to browse photos and upload

photos occasionally from multiple locations
– Large ecommerce store in which the inventory

needs to reflect any purchases made instantly in
all locations

– Shopping cart of customers in an online store in
which users can login from different locations

32

Outline

• What’s a Database ?

• Relational Databases (SQL-based)

• Non-traditional Databases (NoSQL)

• MongoDB Primer

33

MongoDB
• Document-oriented NoSQL database
– Documents are the equivalent of tables
– Stored in JSON format (technically BSON, or binary

JSON)
– Must be smaller than 16 MB in size

• No apriori schema needed, or rather schema can
be modified dynamically
– Can store dissimilar objects in same document
– Documents can be embedded in other documents

34

MongoDB: Data types

35

MongoDB: Example Dataset

36

Databases and Collections

• A MongoDB database consists of multiple
databases. Specify db to use by “use test”

• A database can have multiple collections.
Specify collection as db.collectionName.op

• A collection can have one or more documents
– Each record is called a document

37

Insert into a Database

• db.collectName.insert(document in JSON)

38

Finding objects

• db.collectName.find() – shows all documents

• db.collectName.find(JSON object) – shows
documents satisfying the given JSON object
– Finds all docs with the fields and values equal to

the JSON object passed as an argument
– Can also specify conditional operations such as

$lt, $gt, or logical combinations (using AND, OR)

39

Examples of queries

• db.restaurants.find({“borough”:
“Manhattan”})
– Finds all restaurants with the

borough==manhattan

• db.restaurants.find({ “grades.score”:
{ $gt:30} })

40

Object_id

• Every document is given a unique ‘_id’ value –
automatically assigned by the MongoDB

• Object IDs must be unique in a document, and
should be of type ObjectID

• Can be used to remove or update specific
objects

41

Update

• db.collectName.update(objects to be
matched, object fields to be updated)

Update operator (full list of operators can be found at:
https://docs.mongodb.org/manual/reference/operator/update/)42

Remove

• Can remove documents from a collection
using the remove method

db.collectName.remove(matching condition)

example: db.restaurants.remove({ “borough”:
“Manhattan” })

43

Operations on each record
Example: Print the grades of all restaurants that
have more than one grade associated with them.

db.restaurants.find().forEach(
function(Object) {

if (Object.grades.length > 1)
printjson(Object.grades);

}
)

44

Table Joins in MongoDB

• Joins are not natively supported in MongoDB
and hence need to be written manually
– Iterate over each document of the first collection
– Lookup the corresponding document in the

second collection either by key or by name
– Write JavaScript code to merge the information in

the relevant fields from the two documents
– Return the merged information as the query result

45

Example: Join Operation

• Assume that you had another collection in the
database called “users” which had a list of users
who had reviewed each restaurant. Assume this
collection is indexed by restaurant name.

• We wish to write a query to list all the
restaurants that have at least one review, and
the list of users who reviewed that restaurant.

46

Example Join Operation
db.restaurants.find().forEach(

function(Object) {
If (Object.grades.length > 1) {

var user = db.Users.find(Object.name);
if (user!=null) {

printjson(Object.name);
printjson(user);

}
}

}
)

47

Class Activity

• You have two collections in a MongoDB
database. marks contains the list of students
in a course with their marks and student
number, and students contains the student
number along with details such as first name,
last name etc. How will you compute the join
of these two collections (in JS code) from the
Mongdb shell to list the student details along
with the marks. You can assume the database
is already loaded into the shell.

48

Solution to the activity
db.marks.find().forEach(

function(Object) {
var st = db.students.find({“student no”:

Object.studentNo});
if (st!=null) {

printjson(st);
printjson(Object.marks);

}
else {

print(“No match found for “ + Object.studentno);
}

}
)

49

Outline

• What’s a Database ?

• Relational Databases (SQL-based)

• Non-traditional Databases (NoSQL)

• MongoDB Primer

50

