
ES6 Features
CPEN 400A

Object-oriented Programming
class and constructor keyword

class Car {
 constructor (name, power=1){
 this.name = name;
 this.power = power;
 this.velocity = 0;
 }
 accelerate (fuel){
 this.velocity
 += fuel * this.power;
 }
}

var myCar = new Car("Smart");
myCar.accelerate(10);

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Object-oriented Programming
extends and super keyword

class RacingCar extends Car {
 constructor (name){
 super(name, 3.5);
 }

 turbo (fuel){
 this.velocity += fuel * this.power * 1.5;
 }

}

var superCar = new RacingCar("F1");
superCar.accelerate(10);
superCar.turbo(5);

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Karthik Pattabiraman

Functional Programming
● JavaScript supports functional programming
● When used appropriately, functions can implement pure functions

○ Except it is not actually a pure function
○ Keywords like this, arguments make JavaScript functions impure

● ES6 introduces arrow functions to support real functional programming

Functional Programming
● Arrow functions are not replacements for ES5 functions
● Arrow functions are anonymous functions
● this and arguments inside arrow functions are lexically bound

Syntax Example:
(radius, height) => {
 return radius * radius * Math.PI * height;
}

(radius, height) => (radius * radius * Math.PI * height);

1
2
3
4
5

Functional Programming
● Pure functions

○ Always returns the same value given the same arguments
○ Have no side effects like mutating an external object (e.g., I/O, network resource, variables

outside of its scope)
○ Examples:

■ area of circle, distance between 2 points in 3-dimensional space

● Impure functions
○ Might depend on an external context
○ Might change an external object
○ Examples:

■ Date.now()

■ console.log()

Functional Programming
Arrow function syntax

// Regular function
function(arg1, arg2){
 // do some stuff here
 return arg1 + arg2;
}

// Imperative usage
(arg1, arg2) => {
 // do some stuff here
 return arg1 + arg2;
}

// Pure function
(arg1, arg2) => (arg1 + arg2);

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Functional Programming
● Arrow Function usage scenario

class Timer {
 constructor (){
 this.seconds = 0;
 this.reference = null;
 }
 start (){
 this.reference = setInterval(function(){
 this.seconds += 1;
 }, 1000);
 }
 stop (){
 clearInterval(this.reference);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Functional Programming
● Arrow Function usage scenario

class Timer {
 constructor (){
 this.seconds = 0;
 this.reference = null;
 }
 start (){
 var self = this;
 this.reference = setInterval(function(){
 self.seconds += 1;
 }, 1000);
 }
 stop (){
 clearInterval(this.reference);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Functional Programming
● Arrow Function usage scenario

class Timer {
 constructor (){
 this.seconds = 0;
 this.reference = null;
 }
 start (){
 this.reference = setInterval(()=> {
 this.seconds += 1;
 }, 1000);
 }
 stop (){
 clearInterval(this.reference);
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

What is a Promise
● Promise is a new built-in object introduced in ES6
● Provides a cleaner interface for handling asynchronous operations
● When multiple asynchronous operations need to be made, the callback

pattern becomes hard to follow
○ Scope of variables in multiple nested closures
○ Error handling for each of the callback steps

Promise
● Promise is an object with the following methods

○ then (onResolve, onReject): used to register resolve and reject callbacks
○ catch (onReject): used to register reject callback
○ finally (onComplete): used to register settlement callback

● Promise will be in one of the three states: pending, resolved, rejected
● Promise also has static methods

○ resolve (value): returns a Promise that resolves immediately to value
○ reject (error): returns a Promise that rejects immediately to error
○ all (promises): returns a Promise that resolves when all promises resolve
○ race (promises): returns a Promise that resolves if any of the promises resolve

Promise
● Creating a Promise object

○ new Promise(func): The Promise constructor expects a single argument func, which is a
function with 2 arguments: resolve, reject

○ resolve and reject are callback functions for emitting the result of the operation
■ resolve(result) to emit the result of a successful operation
■ reject(error) to emit the error from a failed operation

var action = new Promise((resolve, reject)=> {
 setTimeout(()=> {
 if (Math.random() > 0.5) resolve("Success!");
 else reject(new Error("LowValueError"));
 }, 1000);
});

1
2
3
4
5
6
7

Promise
● Using the result of a Promise fulfillment through the then method

○ then(onResolve, onReject): used to register callbacks for handling the result of the
Promise. It returns another Promise, making this function chainable

○ onResolve is called if the previous Promise resolves; it receives the resolved value as the
only argument

○ onReject is called if the previous Promise rejects or throws an error; it receives the
rejected value or the error object as the only argument

action.then(
 (result)=> console.log(result), // result: "Success!"
 (error)=> console.log(error) // error: Error("LowValueError")
)
.then(()=> console.log("A"))
.then(()=> console.log("B"));

1
2
3
4
5
6

Promise
● The catch method is used to handle the result of a rejected Promise

○ catch(onReject): used to register a callback for handling the result of the failed Promise. It
returns another Promise, making this function chainable

○ onReject is called if the previous Promise rejects or throws an error; it receives the
rejected value or the error object as the only argument

action.then(
 (result)=> console.log(result), // result: "Success!"
 (error)=> console.log(error) // error: Error("LowValueError")
)
.catch((err)=> console.log(err));

1
2
3
4
5
6

Promise
● The finally method is used to register a callback to be called when a

Promise is settled, regardless of the result
○ finally(onComplete): It returns another Promise, making this function chainable
○ onComplete is called if the previous Promise is settled

action.then(
 (result)=> console.log(result), // result: "Success!"
 (error)=> console.log(error) // error: Error("LowValueError")
)
.catch((err)=> console.log(err))
.finally(()=> console.log("The End!"));

1
2
3
4
5
6

Promise
● The static functions Promise.resolve and Promise.reject are used to

create a Promise object that immediately resolves or rejects with the given
data

○ Useful when the next asynchronous operation expects a Promise object

action.then(
 (result)=> console.log(result), // result: "Success!"
 (error)=> console.log(error) // error: Error("LowValueError")
)
.catch((err)=> console.log(err))
.finally(()=> console.log("The End!"));

1
2
3
4
5
6

Promise
● The return values of the callback functions given to then, catch, and

finally method are wrapped as a resolved Promise, if it is not already a
Promise

action.then(
 (result)=> {
 return "Action Resolved"
 },
 (error)=> {
 return "Action Rejected"
 })
.then((result)=> console.log("Success: " + result),
 (error)=> console.log("Error: " + error.message));

// if action resolves, what is printed? what if it rejects?

1
2
3
4
5
6
7
8
9

10
11

Promise
● Using the static function Promise.all, we can wait for multiple concurrent

Promises to be resolved (sort of like joining threads)
○ Promise.all accepts an Array of promises and returns a Promise that resolves to an array of

results (in the same order as the promises given)

var multi = Promise.all([
 new Promise((resolve)=> setTimeout(()=> resolve("A"), 2000)),
 new Promise((resolve)=> setTimeout(()=> resolve("B"), 3000)),
 new Promise((resolve)=> setTimeout(()=> resolve("C"), 1000)),
]);

multi.then(
 (results)=> console.log(results),
 (error)=> console.log(error));

1
2
3
4
5
6
7
8
9

10
11

Promise
● Using the static function Promise.race, we can retrieve the first Promise to

resolve out of a set of concurrent Promises
○ Promise.race accepts an Array of promises and returns the first Promise that resolves

var multi = Promise.race([
 new Promise((resolve)=> setTimeout(()=> resolve("A"), 2000)),
 new Promise((resolve)=> setTimeout(()=> resolve("B"), 3000)),
 new Promise((resolve)=> setTimeout(()=> resolve("C"), 1000)),
]);

multi.then(
 (result)=> console.log(result),
 (error)=> console.log(error));

1
2
3
4
5
6
7
8
9

10
11

