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0 Mathematical preliminaries

Here we review some concepts which apply to general differentiable manifolds before we specialize to Rie-
mannian manifolds. Topics covered in this section can be found in any textbook on differential geometry
and Riemannian geometry. Mathematicians introduced the concept of a manifold in order to generalize
the Euclidean geometry in R3 or R2. One defines a manifold of dimension n, denoted Mn in the follow-
ing way: A manifold, Mn is a topological space which is covered by a collection of open sets, say, Ui,
i = 1, 2, ....N , for some positive integer, N , i.e.

Mn = ∪Ni=1Ui

and each open set is homeomorphic to an open (set) ball in n-dimensional Euclidean hyperplane, Rn,

Ui ∼= Rn.

A manifold is a topological space because one can have the notion of a neighborhood containing every
“point” in the manifold, the neighborhoods being the open set, Ui’s. As we have discussed in the class
with the example of the two-sphere, S2, one needs more than one coordinate systems or coordinate charts
to cover a manifold (in case of sphere it was seen to be covered by at least 2 charts, one covering all points
except the north pole, while the second chart covering everything except the south pole). However, in
general case as we will talk about two such charts at a time. In the first chart we have points labeled by
unprimed coordinates, {xµ}, while in the second chart we have the points labeled by primed coordinates,
{x′µ}1. We then also demanded that for a point in the manifold which lies in the overlap region of of
two such charts, the coordinates of the point in the two charts should be smooth functions of each other,
i.e. if we label the same point, P in one chart by x and in another chart by x′, then the coordinate
transformation map

x′µ = x′µ(x) (1)

is a smooth function of x and vice-versa. This smoothness means that all order derivatives exist (none
of them diverge)

∂nx′

∂xν1∂xν2 . . . ∂xνn
= finite,

1The curly bracket, {xµ} means that we actually have a list of objects indexed by µ,

{xµ} ≡ (x0, x1, x2, . . .)

Since the chart is homeomorphic to Rn, the total number of objects in the list i.e. the total umber of distinct values that µ
can take is also n. This is called the dimension of the manifold.
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so that we have no problems while making Taylor series expansions of various kinds. Manifolds with such
all order differentiable inter-coordinate transformation maps (C∞) are called differentiable manifolds.
We will denote a differential manifold by the symbol M .

0.1 Calculus on Manifolds (Differential Geometry)

We are already familiar with multi-variable calculus on the Euclidean space, R3. To do calculus on an
n-dimensional manifold, the first thing one has to introduce are functions on the manifold. The idea
is if we pick at random, any point on the manifold, say P , there is a map which inputs P and spits out
a real number in return, f(P ). This is a function, f on the manifold. Usually the point, P is labeled
by its coordinates, so instead of f(P ) we will use the notation, f({xµ}). Since there are n-number of
coordinates which are all in the argument of the function, this is a multi-variable map, but following the
abusive convention prevalent literature we will drop the curly variable, and denote the function as f(xµ).

After introducing functions, the next natural thing is to introduce derivatives. But since such maps
are multi-variable maps one needs to ask and answer “derivative in which direction?”. To this end let’s
consider a one-dimensional curve (for example, the path of a point particle) c through the manifold and
let’s say that our friend, the point P which happens to lie on that curve. I should remind you that a 1D
curve is parameterized by a parameter, call it λ, and each point on the curve the coordinates are functions
of λ,

xµ = xµ(λ).

Now let’s return to the question of taking derivatives of a function on the manifold and rephrase the
question

“What is the rate of change of the function, f as we move along the curve c(λ) at the
point P?”

This rate of change of a function, f would be

df

dλ

∣∣∣∣
P

i.e. ratio of change in the value of the function df as one moves and along the curve measured by change
in the curve parameter value, dλ around/about the point P. But f(P ) can be thought of as a function of
the coordinates of P, xµP . So using chain rule,

df(xµ(λ))

dλ

∣∣∣∣
P

=
dxµ(λ)

dλ

∣∣∣∣
P

∂f(x)

∂xµ
.

This can be written in a form,
df(xµ(λ))

dλ

∣∣∣∣
P

= V µ(xP ) ∂µf

where,

V µ(xP ) =
dxµ(λ)

dλ

∣∣∣∣
P

.
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It is easy to realize these V µ are nothing but components of the tangent vector along the curve at the
point P .
(Recall similar stuff in your vector calculus course, where for a curve in 3d Euclidean space R3, you took
a directional derivative of a function, φ(x) along the curve with tangent vector, n̂ by

n̂ · ∇φ(x)

).
If we think about all one dimensional curves passing through the point P , we can think of the

collection of the tangent vectors of each of those curves at P . One can show that this collection of tangent
vectors form a linear vector space. This vector space located at P constitutes the Tangent Space of the
manifold, M at the point P , denoted by, TPM . Evidently a basis for this vector space, TPM is served by

êµ =
∂

∂xµ
= ∂µ. (2)

This basis of tangent vectors made out of partial derivative operators wrt to the coordinates is naturally
called the coordinate basis. Since we are considering an n-dimensional manifold, the number of coor-
dinates, xµ is n. Then, the number of independent basis vectors, ∂µ, of the tangent space is also n then
i.e. dim(TPM) = n.

However, note that I could have also conducted the analysis using a different coordinate system/chart
covering the same point, P . In this new coordinate system, P is labeled by x′. This would mean that I
am using a different coordinate basis,

ê′µ =
∂

∂x′µ
= ∂′µ

However the rate of change of the function along the curve, df
dλ should be same in any coordinate system.

Mathematically,
df

dλ
= V ν ∂νf = V ′µ ∂′µf.

One can check that this is only possible if the components of the tangent vector must transform under a
general coordinate transformation (1) as follows,

V ′µ(x′) =
∂x′µ

∂xν
V ν(x). (3)

If one introduces a transformation matrix (also called the Jacobian matrix),

Jµ ν(x) =

(
∂x′µ(x)
∂xν . . .
...

)
, (4)

then the above transformation can be written in a matrix form

V ′ = J.V
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where, V is a column vector

 V 1

V 2

...

 and so is V ′. Similarly for the inverse transformation,

xµ = xµ(x′),

one can introduce the inverse Jacobian matrix,

(
J−1

)µ
ν =

(
∂xµ(x′)
∂x′ν . . .

...

)
. (5)

Analogously one can define, the dual vector space at each such point P on the manifold M , called the
cotangent space, denoted by T ∗PM . Here, in brief, we recall the notion of the “dual (vector) space” , V ∗of
a given linear vector space, V . The dual space is defined to be the collection of all linear maps/functions
which takes an input vectors, v ∈ V can spits out a pure number (real or complex). Say ω is a member
of the dual space, ω ∈ V ∗, and v1,2 ∈ V are two vectors, then we have,

ω[v1,2] = real or complex number,

ω[v1 + v2] = ω[v1] + ω[v2].

A typical example of such a linear map which turns vectors into pure numbers would be, θµ := which
takes as the input a vector and it spits out the µ-th component”. So if, v = vαêα. Then,

θµ[v] = vµ.

One can easily check that this map is linear. In fact this example furnishes a basis for the dual space,{
θ̂µ
}

, defined by their action on the basis vectors of the direct space,

θ̂µ[êν ] = δµν .

In particular one can show that dual basis to the coordinate basis (2) in the direct space are given by
coordinate differentials

θ̂µ = dxµ. (6)

This follows from the following argument, under a coordinate change the duality relation should be
unchanged, i.e.

θ̂′
µ
[
ê′ν

]
= θ̂µ [êν ] = δµν

For the coordinate basis, êν = ∂νand ê′ν = ∂′ν , thus giving us,

θ̂′
µ [
∂′ν
]

= θ̂µ [∂ν ] ,(
∂xλ

∂x′ν

)
θ̂′
µ

[∂λ] = δλν θ̂
µ [∂λ]

which leads to the transformation rule (
∂xλ

∂x′ν

)
θ̂′
µ

= δλν θ̂
µ,
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or,

θ̂′
µ

=

(
∂x′µ

∂xν

)
θ̂ν

It is now easy to see that the coordinate differentials satisfy such a transformation rule,

dx′µ =

(
∂x′µ

∂xν

)
d̂x

ν

Thus the dual space basis which is dual to the coordinate basis in the direct space are the coordinate
differentials,

θ̂µ = dxµ.

In the coordinate basis, an element of the cotangent space at P , call it ω will be expanded,

ω = ωµ(x) dxµ.

Again, such an expression has to be invariant under general coordinate transformations, (1), i.e.

ωµ(x) dxµ = ω′µ(x′) dx′µ,

which is only possible if one has the transformation law

ωµ(x) = ω′ν(x′)
∂x′ν

∂xµ

or equivalently

ω′µ(x′) =
∂xν

∂x′µ
ων(x). (7)

This can be again expressed in a matrix language,

ω′ = ω.J−1,

ω = ω′.J.

where now the covariant vector, ω is a row vector, ω =
(
ω0, ω1, ω2, . . .

)
.

At this point that , it is easy to see we can cook up quantities using tangent vectors and dual vectors,
which are invariant under coordinate transformations such as,

ω[V ] = ωµV
µ.

In matrix shorthand,
ω[V ] = ω.V,

which is fine because the rhs being a matrix product of a row vector and a column vector is a pure number:
(1, n)× (n, 1) = (1, 1) .

Theorem: Any two distinct finite dimensional linear vector spaces, V1 and V2 which have
the same dimension, are isomorphic to each other.
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Corollary: A vector space, V and it’s dual vector space, V ∗ are isomorphic to each other. This
isomporphism allows one to map/identify each and every vector, v to it’s image vector dual vector, v∗:

v∗ ↔ v. (8)

Using this map, one can define an inner product of two vectors, say v1 and v2 as follows:

(v1, v2) ≡ (v∗1)µ v
µ
2 . (9)

In fact, one can use this to define the norm of vector, ||v||, by taking the inner product of a vector
with itself,

||v||2 = (v∗)µ v
µ.

We realize this isomorphism between the vector and dual vector i.e. (8), in component form, by
specifying a quantity called the metric, gµν

(v∗)µ = gµνv
ν . (10)

Specifying a metric, turns the vector space into a metric space. In particular, specifying a metric for the
tangent space, TPM at each point, P in a differentiable manifold turns it into a Riemannian Manifold .

0.2 Lie derivative or Lie brackets

One can rewrite the transformation law of vectors and dual vectors, (3) and (7), in active transformation
form as follows. Under a diffeomorphism/ general coordinate transformation,

xµ → x′µ(x) = xµ + ξµ(x),

a vector transforms as,

V µ(x)→ V ′µ(x′) =
∂x′µ

∂xν
V ν(x),

= V µ(x) + ξµ,ν V
ν(x).

=⇒ V ′µ(x) = V µ(x− ξ) + ξµ,ν V
ν(x− ξ).

So, one defines the Lie derivative, LξV by the active transformation,

V ′µ(x)− V µ(x) = V µ(x− ξ) + ξµ,ν V
ν(x− ξ)− V µ(x)

= V µ(x)− ξν∂νV µ(x) +O
(
ξ2
)

+ ξµ,ν V
ν(x− ξ)− V µ(x)

= − (ξν∂νV
µ − V ν∂νξ

µ) +O
(
ξ2
)

≡ − (LξV )µ +O
(
ξ2
)
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Similarly, from the transformation rule one can define the Lie-derivative of an one-form,

ω′µ(x)− ωµ(x) =
∂xν

∂x′µ
ων(x− ξ)− ωµ(x)

= −ξν∂νωµ − ων∂µξν +O
(
ξ2
)

≡ − (Lξω)µ +O
(
ξ2
)

Although we can define a Lie-derivative for a one-form, we do not define the Lie-bracket for an one-form.

One can generalize this process to general (p, q)-type tensors. The results are summarized here,

(LξV )µ = ξν∂νV
µ − V ν∂νξ

µ

(Lξω)µ = ξν∂νωµ + ων∂µξ
ν

(LξT )µ1...µp ν1...νq = ξν∂ν T
µ1...µp

ν1...νq − T ρ...µp ν1...νq∂ρξµ1 − Tµ1ρ...µp ν1...νq − . . .
+Tµ1...µp ρ...νq∂ν1ξ

ρ + Tµ1...µp ν1ρ...νq∂ν2ξ
ρ + . . .

It is important to note that the Lie derivative, doesn’t change the rank of the tensor on which it is acting,
i.e. Lie derivative of a vector is a vector, Lie derivative of a one-form is another one-form, Lie derivative
of a scalar is a scalar as well, and so on.

Homework:
a. Show that for a scalar the Lie derivative is just the directional derivative:

Lξφ = ξµ∂µφ.

b. Show that the Lie derivative obeys the Leibniz rule for differentiation,

Lξ (V1 ⊗ V2) = V1 ⊗ (LξV2) + V1 ⊗ (LξV2) .

where, V1,2 are tangent space vectors.

The action of Lie-derivative on vectors, also allows us to define a new binary operation in the Tangent
space, namely, the Lie bracket of any two vectors,

[V1, V2] ≡ LV1V2

Homework:
Show that the Lie-bracket obeys the following three properties
a. Linearity:

[ξ, V1 + V2] = [ξ, V2] + [ξ, V2] .

b. Anti-symmetry:
[V1, V2] = − [V2, V1] .
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c. Jacobi Identity:
[V1, [V2, V3]] + [V2, [V3, V1]] + [V3, [V1, V2]] = 0.

One can show that the commutator of two successive diffeomorphisms, η and ξ, is a third diffeomor-
phism given by the Lie bracket of η and ξ.

Lη (LξV )− Lξ (LηV ) = L[η,ξ]V.

In math (differential geometry) literature, the notion of a Lie derivative follows naturally from integral
curves of a (smooth) vector field. These curves are such that the tangent vector at each point on the
curve coincides with the vector field. Such integral curves represent a map from the manifold to itself,
which further induces a map between tangent spaces (and cotangent spaces) all along the curve2 . The
Lie derivative of a smooth vector field, Y along the integral curve of another smooth vector field X is
defined to be the Lie derivative, LXY by taking the difference of the vector field Y with the induced map
(pushforward) vector of Y along an integral curve of X:

LXY = lim
δ→0

Y (x+ δ)− f∗Y (x+ δ)

δ

Here x and x+δ are two points on the integral curve of X, given by the curve equation, f(x) = x+δ. Using
the formula for pushforward maps, one can check and the above equation coincides with the expression
found before,

LXY = Xν∂νY
µ − Y ν∂νX

µ.

Once we have defined Lie derivatives for vector fields, one can generalize this notion to define Lie deriva-
tives for dual vectors and higher rank tensors by demanding that the Lie derivative obeys Leibniz rule
and that the Lie derivative must act on a scalar like a directional partial derivative. Thus given a smooth
vector field, say X on can introduce a notion of differentiation along the integral curves of X. However, in
many situations one might not have any smooth vector field supported on the manifold (e.g. Hairy ball
theorem for compact manifolds). Thus we will opt for a different notion of differentiation in the coming
sections, namely the covariant derivative by introducing an independent additional data, dubbed as the
affine connection for the manifold (including compact manifolds such as S2).

2In general, a (smooth) map between points on two different (or different points on the same) manifold(s) in turn induces
a map between tangent (cotangent) spaces at the two points, popularly referred to as pushforward (pullback) maps. Let’s
say f is a smooth map from the manifold, Mm to the manifold Nn. Then the pushforward map f∗ : TPM→ Tf(P )N is defined
by,

[f∗V (y)]µ = V ν(x)
∂yµ

∂xν
.

Here xµ, yµ are the coordinates of the point P in M and f(P ) on N. V is a vector field defined on M. The pullback map then
follows,

[f∗ω(y)]µ = ων
∂xν

∂yµ
.
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1 Riemannian Manifolds

Mathematically, the curved spacetime of general relativity is a Riemannian manifold i.e. a differential
manifold, M , which comes with an extra feature called the metric (g), which allows us to define distances.
A Riemannian manifold is usually denoted as (M, g). Two nearby points in a Riemannian manifold with
coordinates, {xµ} and {xµ + dxµ} are separated by a “distance” aka spacetime interval,

ds2 = gµν(x) dxµ dxν . (11)

The same information is also presented in a matrix form i.e. metric g is written as a matrix, with the
element in the µ-th row and ν-th column being gµν

gµν =

ν-th column
↓

µ−th row→

 gµν


The metric, gµν can be taken to be symmetric in its indices by rewriting (11) a bit, as we show in the
next few lines

ds2 = g12dx
1dx2 + g21dx

2dx1 + ...

= (g12 + g21) dx1dx2 + . . .

= g̃12dx
1dx2 + g̃12dx

1dx2 + . . .

= 2g̃12dx
1dx2

where

g̃12 = g̃21 =
g12 + g21

2
.

From now on we will take the metric to be in symmetric form only. In general for a vector space, the
metric is defined to be a (0, 2) rank tensor satisfying the following conditions:

g(U, V ) = g(V,U)(symmetry) (12)

g(U,U) ≥ 0, (norm positivity) (13)

where the equality holds iff U = 0, the zero vector, i.e. a symmetric nondegenerate (0,2) rank tensor.

However for tangent space vectors in Lorentzian spacetimes (see insert next page), norm positivity
condition (13) is not true and instead one has to modify it little bit to define a nondegenerate metric in
the following manner: if g(U, V ) = 0,∀V , then U = 0, the zero vector. One can check that this criterion
disallows zero eigenvalues of the metric and keeps it invertible.
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Normally, the square of the distance between two points in space is a positive quantity, unless the points
are coincident in which case the distance is zero:

gµνdx
µdxν ≥ 0

and hence in most spaces the metric tensor as a matrix would only have positive eigenvalues. However, in
physics we need to include time as a coordinate, and we have seen before in special relativity, the square
of the “spacetime distance” between two points which are timelike separated ( i.e. have same spatial
coordinates, dx = 0 but different times of occurrences, dt 6= 0 ), is negative,

ds2 = −dt2 + dx2 = −dt2.

Such spaces which allow for negative eigenvalues of the metric, gµν are called Pseudo-Riemannian mani-
folds by mathematicians and Lorentzian spacetimes by physicists. They are defined by,

gµνdx
µdxν > 0, for spacelike separated points

gµνdx
µdxν = 0, for coincident or ”lightlike/null” separated points

gµνdx
µdxν < 0, for timelike separated points

The squared line element, (11) must amount to the exact same quantity, regardless of whatever
coordinate chart (x or x′) we use to compute it. This implies

g′µν(x′) dx′µ dx′ν = gµν(x) dxµ dxν ,

or equivalently,

g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′µ
gαβ(x). (14)

Thus the metric turns out to be a tensor, to be precise, a symmetric (0, 2) rank tensor. As such it can be
expanded in the tensor product basis for (0,2) tensors, namely, dxµ ⊗ dxν in the following way

g = gµν(x) dxµ ⊗ dxν .

However unlike in the Minkowski case, it is not an invariant tensor anymore - it changes to a new function
g′.

Note that the transformation law (14) for the metric tensor components can also be expressed in a
matrix notation using the inverse Jacobian,

g′ = J−T g J−1. (15)

where J−T ≡
(
J−1

)T
.

Homework: Consider two dimensional flat space (just space and no time), also known as 2d Euclidean
space, R2. One can either use the Cartesian coordinates to label points in R2 i.e. (x, y), or one can use
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the plane polar coordinate system (r, θ) to label (almost) all the points in R2. The distance between two
points in R2 say (r, θ) and (r + dr, θ + dθ) is given by the familiar “squared line element”,

ds2 = dr2 + r2 dθ2.

So the metric, g is given by the components,

grr = 1, gθθ = r2, grθ = gθr = 0.

In matrix form,

gµν =

(
grr grθ
gθr gθθ

)
=

(
1 0
0 r2

)
.

Check that under the coordinate transformations,

x = r cos θ,

y = r sin θ,

the metric transforms to,

gµν =

(
gxx gxy
gyx gyy

)
=

(
1 0
0 1

)
.

i.e. to say, the metric in Cartesian coordinates is,

ds2 = dx2 + dy2.

(Hint: First construct the Jacobian matrix, J =

( ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
and use the transformation law (15)).

1.1 Lowering and raising indices

The metric tensor allows us to map contravariant vectors to covariant vectors, the so called “lowering the
index”,

Vµ(x) = gµν(x)V ν(x)

while the inverse metric, gµν , defined by,

gµν(x) gνλ(x) = δµλ

can be used to convert covariant vectors to contravariant vectors by the “raising the index” operation,

ωµ(x) = gµν(x) ων(x).
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1.2 Invariant tensors

From the homework, it is clear that the metric is not an invariant tensor under a general coordinate
transformation. In the homework we transformed from plane polar to Cartesian coordinate system and
the metric expressions (matrix) looked completely different. But one can check that the Kronecker delta
continues to be an invariant tensor,

δµν → δ′µν =
∂x′µ

∂xα
∂xβ

∂x′ν
δαβ

=
∂x′µ

∂xα
∂xα

∂x′ν

=
∂x′µ

∂x′ν

= δµν .

What about the Levi Civita symbol, εµνρσ? Is this a tensor at all? and if it is a tensor, is it an invariant
tensor under general coordinate transformations? Recall that we had defined, the Levi-Civita symbol by
the rule:

εµνρσ = (−)P . (16)

where, P demotes the number of swaps one needs to turn 0123 to µνρσ. Similarly, we defined another
Levi-Civita symbol with upstairs indices,

εµνρσ = ηµαηνβηργησδεαβγδ.

The Levi-Civita symbol turned out to be invariant tensor under Lorentz transformations. But in the
following we will see that unfortunately under the general coordinate transformation, the Levi-Civita
symbol is non even a tensor, let alone an invariant tensor (in fact it is something we call a tensor-density).
But before we proceed we also need to consider the transformation of the metric determinant, g, or more
suitably the determinant of the inverse of metric, gµν under a GCT,(

g′
)−1 =

1

4!
εµνρσ εαβγδ g

′µα g′νβ g′ργ g′σδ

=
1

4!
εµνρσ εαβγδ

(
Jµ µ̄ J

α
ᾱ g

µ̄ᾱ
) (
Jν ν̄ J

β
β̄ g

ν̄β̄
) (
Jρ ρ̄ J

γ
γ̄ g

ρ̄γ̄
) (
Jσ σ̄ J

δ
δ̄ g

σ̄δ̄
)

=
1

4!
(εµνρσ J

µ
µ̄J

ν
ν̄J

ρ
ρ̄J

σ
σ̄)
(
εαβγδ J

α
ᾱJ

β
β̄J

γ
γ̄J

δ
δ̄

)
gµ̄ᾱ gν̄β̄ gρ̄γ̄ gσ̄δ̄

= J2 1

4!
εµ̄ν̄ρ̄σ̄ εᾱβ̄γ̄δ̄ g

µ̄ᾱ gν̄β̄ gρ̄γ̄ gσ̄δ̄

= J2g−1. (17)

Here, J is the determinant of the Jacobian. This implies,

g′ = J−2g. (18)

Such quantities which transform under GCT with various factors/powers of the Jacobian determinant, J
hanging around are called tensor densities. Now we are in a position to figure out the transformation
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rule for ε under a GCT. Again, our starting point is the definition of the determinant of the Jacobian
inverse (we are denoting the determinant of the Jacobian matrix by J),

εαβγδ J
−1 = εµνρσ

(
J−1

)µ
α

(
J−1

)ν
β

(
J−1

)ρ
γ

(
J−1

)σ
δ (19)

Now look carefully at the rhs of the above equation. It looks like we have a transformation rule of ε as a
(0, 4)-type tensor. But the LHS is not ε but has a factor of J hanging around. So the Levi-Civita symbol
is not a tensor but a tensor density as well. Similarly from the determinant identity,

εµνρσ J = Jµ α J
ν
β J

ρ
γ J

σ
δ ε

αβγδ,

we note that he Levi-Civita symbol with all four upstairs indices, εαβγδ is a tensor-density as well.

1.3 “New and Improved” Levi-Civita tensor : Invariant Levi-Civita tensor for curved
spacetime

Recalling the way the determinant of the inverse metric transformed, we can perhaps cook up an invariant
antisymmetric tensor,

εµνρσ
?≡ 1
√
g
εµνρσ

In Lorentzian spacetimes, g < 0, so we need to put an extra minus sign inside before we take a square
root. So,

εµνρσ ≡
1√
−g

εµνρσ. (20)

Perhaps similarly we can define another separate invariant tensor from the εαβγδ, say

ε̃αβγδ =
√
−g εαβγδ

What about when we try to raise all 4 indices to turn it into, εµνρσ? Let’s raise the indices and see what
happens,

εµνρσ = gµαgνβgργgσδ εαβρσ

=
1√
−g

gµαgνβgργgσδ εαβρσ

=
1√
−g

(−εµνρσ g)

=
√
−g ε̃µνρσ

= ε̃αβγδ!

So we don’t need a separate completely antisymmetric tensor with the tilde!

εµνρσ =
√
−g ε̃αβγδ. (21)
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1.4 Invariant Volume element

Recall that we defined the volume element by the 4-form in Minkowski spacetime

d4x = dx0 ∧ dx1 ∧ dx2 ∧ dx3.

Again, we are interested in knowing how does this volume element transform under GCT. To do this, we
first rewrite it as using the Levi Civita symbol, εµνρσ

d4x = εµνρσ dx
µ ⊗ dxν ⊗ dxρ ⊗ dxσ,

In the primed coordinate frame,

d4x′ = εµνρσ dx
′µ ⊗ dx′ν ⊗ dx′ρ ⊗ dx′σ

= εµνρσ J
µ
α J

ν
β J

ρ
γ J

σ
δ dx

α ⊗ dxβ ⊗ dxγ ⊗ dxδ

= εαβγδ J dx
α ⊗ dxβ ⊗ dxγ ⊗ dxδ

= J d4x. (22)

So the volume element is a tensor-density as well. (This is the proof of the volume element transformation
you learn in multi-variable calculus). From this transformation of the volume element, (22) and recalling
the transformation rule for the metric determinant, (18), we see that we can define an invariant volume
element,

dV ≡
√
−gd4x. (23)

2 Covariant Calculus: Affine connection

In the case of Minkowski spacetime, R1,3, we have seen that the derivative of a (p, q)-type tensor, ∂µT
is a tensor as well under Poincaré transformations - in fact the derivative turns it into a (p, q + 1)-type
tensor. This fact was crucial when we wanted to make equations of physics covariant under Poincaré
transformations because most equations in physics express “rate of change” of physical quantities,

∂µT = X

where X is a (p, q + 1)-type tensor while, T is a (p, q)-type tensor .

Now the question we are confronted with at this point is - do derivatives of tensor fields in a generic
(Pseudo)-Riemannian spacetime, transform as tensors under a general coordinate transformation (GCT).
To this end let’s check how a derivative of a vector field transforms under a GCT,

∂µV
ν(x)→ ∂′µV

′ν(x′) =
∂xα

∂x′µ
∂α

(
∂x′ν

∂xβ
V β(x)

)
=

∂xα

∂x′µ
∂x′ν

∂xβ
∂αV

β(x) +
∂xα

∂x′µ
∂2x′ν

∂xα∂xβ
V β(x). (24)

So we observe that the derivative of a vector does not transform homogeneously under a GCT, and in
fact contains a non-tensor piece, namely, the second term

∂xα

∂x′µ
∂2x′ν

∂xα∂xβ
V β(x) (25)
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in addition to nice tensor like piece,
∂xα

∂x′µ
∂x′ν

∂xβ
∂αV

β(x).

So as of now we cannot write down rate equations in a covariant form because the derivative fails to
be covariant. For example, the continuity equation,

∂µj
µ = 0→

(
∂′µj
′µ + non-tensor junk

)
= 0,

changes to something unpleasant in appearance.

How do we remedy the situation? The idea is that maybe we can define/cook up a covariant
derivative , ∇, by adding some non-tensor piece, say Γνµλ to an ordinary partial derivative which will
cancel out the non-tensor piece (25), which arises when carry out do a GCT , i.e. define,

∇µV ν ≡ (∇µV )ν = ∂µV
ν + Γνµλ V

λ. (26)

and demand that under a GCT,

∇µV ν → ∇′µV ′ν =
∂xα

∂x′µ
∂x′ν

∂xβ
∇αV β. (27)

Let’s see what kind of constraint does this covariance condition impose on the transformation rule of the
quantity, Γ under a GCT. To this end we compute the LHS of the above transformation law (27),

∇′µV ′ν = ∂′µV
′ν + Γ′νµλ V

′λ

=
∂xα

∂x′µ
∂x′ν

∂xβ
∂αV

β +
∂xα

∂x′µ
∂2x′ν

∂xα∂xβ
V β + Γ′νµλ

∂x′λ

∂xβ
V β,

while the RHS of (27) is,h

∂xα

∂x′µ
∂x′ν

∂xβ
∇αV β =

∂xα

∂x′µ
∂x′ν

∂xβ

(
∂αV

β + ΓβαγV
γ
)
.

Equating the last two expressions, we get,

∂xα

∂x′µ
∂2x′ν

∂xα∂xβ
V β + Γ′νµλ

∂x′λ

∂xβ
V β =

∂xα

∂x′µ
∂x′ν

∂xβ
ΓβαγV

γ ,

or, simplifying things a bit(
Γ′νµλ

∂x′λ

∂xγ
− ∂xα

∂x′µ
∂x′ν

∂xβ
Γβαγ +

∂xα

∂x′µ
∂2x′ν

∂xα∂xγ

)
V γ = 0.

Since this equality holds for arbitrary V γ , the quantity inside the parenthesis must be zero,

Γ′νµλ
∂x′λ

∂xγ
− ∂xα

∂x′µ
∂x′ν

∂xβ
Γβαγ +

∂xα

∂x′µ
∂2x′ν

∂xα∂xγ
= 0
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or, multiplying both sides by ∂xγ

∂x′ρ , we get the transformation rule for Γ,

Γ′νµρ =
∂xα

∂x′µ
∂xγ

∂x′ρ
∂x′ν

∂xβ
Γβαγ−

∂xα

∂x′µ
∂xγ

∂x′ρ
∂2x′ν

∂xα∂xγ
. (28)

Thus we see that Γ itself transforms non-covariantly, the second piece which is underlined is an inhomo-
geneous piece. The first piece (not underlined) is of course a pure tensor like transformation piece. Some
remarks about this object, Γ and the related covariant derivative, ∇, are in order:

1. Γµνλ is called the affine connection . The name comes from the idea that Γ maps vectors from
distinct tangent vector spaces of nearby points (affine) on the manifold. The word affine is derived
from the word affinity which means “closeness” or “kinship”. Heuristically, the affine connection
measures the rate of change of the basis vectors as one moves from one tangent space located at P
to the tangent space located at a neighboring P ’. Thus if êν is a basis vector in the tangent space,
then

∇µêν ≡ Γλµν êλ.

(Check that this implies the following rule for covariant derivative of dual/contangent space basis
vectors

∇µθ̂ν = −Γνµλθ̂
λ.

)

2. This object is non-unique, we could only pin this connection down up to its transformation rule
(28), not the exact expression. Homework: Show that adding a pure tensor, a (1, 2)-type tensor,
Tµνλ to an affine connection, Γµνλ gives us another new affine connection, Γ̄µνλ i.e. show that,

Γ̄µνλ ≡ Γµνλ + Tµνλ

also transforms like (28). An equivalent statement is: The difference of two affine connections is a
(1,2) rank pure tensor.

3. The covariant derivative, ∇ does obey the necessary conditions it needs to satisfy to be called a
derivative i.e. linearity,

∇µ (V1 + V2)ν = ∇µV ν
1 +∇µV ν

2 ,

and Leibnitz rule,
∇λ (V µ

1 V
ν

2 ) = V µ
1 ∇λV

ν
2 + V ν

2 ∇λV
µ

2 .

4. We note that the ordinary derivative of a scalar, ∂µφ(x) does transform like a vector, so we must
have that the covariant derivative of a scalar must reduce to its ordinary partial derivative,

∇µφ ≡ ∂µφ
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5. Leibniz rule for covariant derivative plus the fact that ∇ reduces to a ordinary partial derivative,
∂ when acted on scalars immediately yields the action of covariant derivative on a cotangent space
vector or one-form aka a covariant vector. Leibniz rule gives,

∇µ (V νων) = V ν∇µων + ων∇µV ν

= V ν∇µων + ων

(
∂µV

ν + Γνµλ V
λ
)
,

while scalar property gives,

∇µ (V νων) = ∂µ (V νων) = V ν∂µων + ων∂µV
ν .

Equating the two expressions,

V ν∇µων + ων Γνµλ V
λ = V ν∂µων ,

or, (
∇µων − ∂µων + Γλµνωλ

)
V ν = 0.

Since this equality holds for arbitrary V ν , we must have,

∇µων − ∂µων + Γλµνωλ = 0,

or
∇µων = ∂µων − Γλµνωλ (29)

6. Finally by creating higher rank tensors by taking tensor products of contravariant and covariant
vectors and using Leibniz rule we can arrive at the expression for covariant derivative of general
rank tensors:

∇λ Tµ1...µp ν1...νq = ∂λ T
µ1...µp

ν1...νq + Γµ1λα T
αµ2...µp

ν1...νq + Γµ2λα T
µ1α...µp

ν1...νq + . . .

−Γβλν1 T
µ1...µp

βν2...νq − Γβλν2 T
µ1...µp

ν1β...νq − . . . (30)

3 Levi Civita connection

In a Riemannian manifold, (M, g), the specification of the metric singles out a very special affine connection
which is a function of the metric and its derivative, Γλµν = Γλµν(g, ∂g). This is called the Levi-Civita
connection. It is defined by the following two properties,

1. Symmetry under exchange of the two downstairs indices:

Γλµν = Γλνµ.

Otherwise known as the Torsion-free condition.
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2. The metric tensor remains covariantly constant,

∇µgνρ = 0.

Otherwise known as the metric compatibility condition.

Solving the above pair of equations, we get the Levi-Civita connection,

Γλµν =
1

2
gλρ (∂µgρν + ∂νgµρ − ∂ρgµν) . (31)

Homework: Derive the above formula from the torsion-free and metric compatibility condition.

4 Point Particle in curved spacetime : Geodesic equation

The action for the point particle moving through curved spacetime is,

Ipp [x(λ)] = −m
ˆ
dλ

√
−gµν (x(λ))

dxµ(λ)

dλ

dxν(λ)

dλ

where λ is some parameter labeling the curve. The Lagrangian is,

L

(
xµ,

dxν

dλ

)
= −m

√
−gµν (x(λ))

dxµ(λ)

dλ

dxν(λ)

dλ
, (32)

and the Lagrange’s equation of motion is,

∂L

∂xµ
=

d

dλ

(
∂L

∂ẋµ

)
, ẋ ≡ dx

dλ
.

Plugging in the form of the Lagrangian (32), we get

− m

2
√
−gαβ (x) ẋαẋβ

(−∂µgρσẋρẋσ) =
d

dλ

(
m 2 gµρẋ

ρ

2
√
−gαβ (x) ẋαẋβ

)
(33)

Define a new parameter, the proper time, τ given by,

dτ

dλ
=
√
−gαβ (x) ẋαẋβ,

so that,
d

dλ
=
dτ

dλ

d

dτ
=

(√
−gαβ (x) ẋαẋβ

)
d

dτ
.
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In this parametrization the equation of motion, (33), looks like,

−m
2

(
−∂µgρσ

ẋρ√
−gαβ (x) ẋαẋβ

ẋσ√
−gαβ (x) ẋαẋβ

)
=

d

dτ

(
m 2 gµρẋ

ρ

2
√
−gαβ (x) ẋαẋβ

)
,

=⇒ m

2
∂µgρσ

dxρ

dτ

dxσ

dτ
=

d

dτ

(
m gµρ

dxρ

dτ

)
= m

(
d

dτ
gµρ

dxρ

dτ
+ gµρ

d2xρ

dτ2

)
= m

(
∂νgµρ

dxν

dτ

dxρ

dτ
+mgµρ

d2xρ

dτ2

)
.

Multiplying both sides by gλµ

m , we get,

d2xλ

dτ2
+ gλµ∂νgµρ

dxν

dτ

dxρ

dτ
− 1

2
gλµ∂µgρσ∂νgµρ

dxν

dτ

dxρ

dτ
= 0,

which can be rearranged a bit to look like,

d2xλ

dτ2
+

1

2
gλµ (∂νgµρ + ∂ρgνµ − ∂µgνρ)

dxν

dτ

dxρ

dτ
= 0.

But the quantity in the parenthesis can be identified to be the Levi-Civita connection, hence we have the
equation of motion of a point particle to be,

d2xλ

dτ2
+ Γλνρ

dxν

dτ

dxρ

dτ
= 0. (34)

This is also called geodesic equation . Geodesics are defined to be curves of extremal distances (station-
ary variation) in a Riemannian manifold. Since the point particle action is proportional to the path-length,
extremizing the particle action gives rise to particle trajectories along curves of least path-length or ex-
tremal path-length.

4.1 Parallel transport

We have claimed earlier that the affine connection(s) allows us to compare vectors in different tangent
spaces. One can then use the affine connection to ask the question, whether two vectors in the two
different tangent spaces can be “aligned” or “parallel” to each other. Another way of phrasing the same
question is, how can one use the affine connection to transport a given vector from one tangent space to
another in a manner “parallel to itself”. To answer this we consider a vector, V at the point P . Suppose
we want to transport this vector V living in TPM to another point P ′ along some path connecting P toP ′.
If ξµ = dxµ

dλ be the tangent vector along the path (curve) PP ′, then for parallel transport, the change in
the vector after being transported on the curve by an parameter interval, dλ is,

(ξµ∇µV ν) = 0.

Expanding out everything,

dxµ

dλ

(
∂µV

ν + ΓνµρV
ρ
)

= 0

=⇒ dV ν

dλ
+ ΓνµρV

ρdx
µ

dλ
= 0. (35)
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In particular we can choose V µ = dxµ

dλ i.e. the tangent vector to some yet undetermined curve itself. Then
the equation of motion of this self-parallel motion i.e. parallel transporting this tangent vector along itself
is given by,

d2xν

dλ2
+ Γνµρ

dxµ

dλ

dxρ

dλ
= 0. (36)

Now we know in Euclidean geometry only type of curve is obtained parallel transporting along its tangent
- the straight line. So the above equation gives the definition of “straight line” in curved spacetimes. Note
that the connection appearing in the self-parallel equation can be ANY affine connection, not necessarily
the Levi-Civita connection. However the connection appearing in the geodesic motion is the Levi-Civita
connection.

5 Geodesic Deviation equation: Riemann Tensor

We consider a family of geodesics i.e. a one parameter family of geodesics, xµ(τ, s), where s is the label
for the different geodesics and τ of course is the proper time labeling points on the same geodesic. Now at
the beginning of the course I claimed that the curvature of spacetime is measured by examining whether
the geodesics are converging, diverging or remaining parallel. In this section we will study this. Few
things we need are:

• tangent vector along the geodesic,

Tµ =
∂xµ(τ, s)

∂τ
.

• geodesic separation/deviation vector,

Sµ =
∂xν(τ, s)

∂s
,

i.e. the vector connecting points on two different geodesics but those points have the same value of
τ is,

∼ Sµ δs

.

Note that since the order of partial derivatives do not matter,

∂Tµ

∂s
=
∂Sµ

∂τ
=
∂2xµ(τ, s)

∂τ∂s
.

So the first natural candidate for how quick the geodesics converging or diverging as we progress along
the geodesic i.e. move along τ is perhaps acceleration of the geodesic deviation i.e.

∝ ∂2Sµ

dτ2
.

But as we will see this is not quite appropriate. The reason goes as follows. Recall that for parallel
straights lines in flat space, we naively expect the tangent vector to remain unchanged as we move along
the straight line, i.e.

∂Tµ

∂τ
= 0,
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BUT we have seen that in polar coordinates this is not so, in fact the proper equation is,

T ν∇νTµ = 0.

So taking the cue from this, we can modify our claim, the geodesic separation rate should be measured
perhaps by the quantity

(T.∇)2 Sµ,

instead of ∂2Sµ

∂τ2
.

Before we go any further we note the following identity

(T.∇)Sµ = T ν∇νSµ

= T ν
(
∂νS

µ + ΓµνρS
ρ
)

=
∂Sµ

∂τ
+ ΓµνρT

νSρ

=
∂Tµ

∂s
+ SρΓµρνT

ν

= Sν∇νTµ

= (S.∇)Tµ (37)

where we have used chain rule,

T ν =
∂xν(τ, s)

∂τ
, T ν∂ν =

∂xν(τ, s)

∂τ

∂

∂xν(τ, s)
=

∂

∂τ

to go from the second to third line. Then we used

∂Sµ

∂τ
=
∂2xµ(τ, s)

∂τ∂s
=
∂Tµ

∂s

to go from third to fourth line. Then finally we used the

∂

∂s
=
∂xν(τ, s)

∂s

∂

∂xν(τ, s)
= Sν∂ν

and, the parallel transport definition,

Sν∂νT
µ + SρΓµρνT

ν = Sν
(
∂νT

µ + SρΓµνρT
ρ
)

= Sν∇νTµ,

to go from the fourth line to the fifth line.

Now let’s go back to our object of interest, i.e. the geodesic separation acceleration (T.∇)2 Sµ. Now
observe that, due to the identity (37)

(T.∇)2 S = T.∇ (T.∇S) = T.∇ (S.∇T ) .
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Next we fully expand this quantity, indices and all in full glory.

T.∇ (S.∇T )µ = T ν∇ν (S.∇T )µ

= T ν∂ν (S.∇T )µ + T νΓµνσ (S.∇T )σ

=
∂

∂τ
(Sρ∇ρT )µ + T νΓµνλ (Sρ∇ρT )λ

=
∂

∂τ

(
Sρ∂ρT

µ + SρΓµρσT
σ
)

+ T νΓµνλ

(
Sρ∂ρT

λ + SρΓλρσT
σ
)

=
∂

∂τ

(
∂

∂s
Tµ + SρΓµρσT

σ

)
+ T νΓµνλ

(
∂

∂s
T λ + SρΓλρσT

σ

)
=

∂2Tµ

∂τ∂s
+

∂

∂τ

(
SρΓµρσT

σ
)

︸ ︷︷ ︸+T νΓµνλ
∂T λ

∂s
+ ΓµνλΓλρσT

νSρT σ

=
∂2Tµ

∂τ∂s
+
∂Sρ

∂τ
ΓµρσT

σ + T νSρT σΓµρσ,ν + SρΓµρσ
∂T σ

∂τ︸ ︷︷ ︸
+T νΓµνλ

∂T λ

∂s
+ ΓµνλΓλρσT

νSρT σ,

=
∂2Tµ

∂τ∂s
+
∂Sρ

∂τ
ΓµρσT

σ + T νΓµνλ
∂T λ

∂s
+ SρΓµρσ

∂T σ

∂τ

+T νSρT σΓµρσ,ν + ΓµνλΓλρσT
νSρT σ. (38)

Note that in going from the second last to the last line, I have used,

∂Sρ

∂τ
=
∂T ρ

∂s
.

To male further progress, we need to simply the term,

∂2Tµ

∂τ∂s
.

To this end we note that, we take the following covariant directional derivative of both sides of the geodesic
equation,

S.∇ (T.∇T = 0)︸ ︷︷ ︸ =⇒ S.∇ (T.∇T ) = 0,

or in full blown index notation,

0 = [S.∇ (T.∇T )]µ

= (Sρ∇ρT.∇T )µ

= Sρ∂ρ (T.∇T )µ + SρΓµρβ (T.∇T )β︸ ︷︷ ︸
=

∂

∂s
(T ν∂νT

µ + T νΓµνσT
σ) + SρΓµρβ 0︸︷︷︸

=
∂

∂s

(
∂

∂τ
Tµ + T νΓµνσT

σ

)
=

∂2Tµ

∂s∂τ
+
∂T ρ

∂s
ΓµνσT

σ + T νSρT σΓµνσ,ρ + T νΓµνσ
∂T σ

∂s
.
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This implies,
∂2Tµ

∂s∂τ
= −∂T

ρ

∂s
ΓµνσT

σ − T νSρT σΓµνσ,ρ − T νΓµνσ
∂T σ

∂s
. (39)

We plug this in the result for the geodesic deviation equation (38), and we get,

T.∇ (S.∇T )µ = −∂T
ρ

∂s
ΓµνσT

σ − T νSρT σΓµνσ,ρ − T νΓµνσ
∂T σ

∂s

+
∂Sρ

∂τ
ΓµρσT

σ + T νΓµνλ
∂T λ

∂s
+ SρΓµρσ

∂T σ

∂τ

+T νSρT σΓµρσ,ν + ΓµνλΓλρσT
νSρT σ

= T νSρT σ
(

Γµρσ,ν − Γµνσ,ρ + ΓµνλΓλρσ

)
+ SρΓµρλ

∂T λ

∂τ︸︷︷︸ . (40)

Finally we replace the underbraced term using the geodesic equation,

∂T λ

∂τ
+ ΓλνσT

νT σ = 0 =⇒ ∂T λ

∂τ
= −ΓλνσT

νT σ.

and obtain the expression for the geodesic separation “acceleration rate”

(T.∇)2 Sµ = T.∇ (S.∇T )µ = T νSρT σ
(

Γµρσ,ν − Γµνσ,ρ + ΓµνλΓλρσ − ΓµρλΓλνσ

)
= T νSρT σRµ σνρ, (41)

where we have introduced the Riemann Curvature Tensor ,

Rµ σνρ ≡ Γµρσ,ν − Γµνσ,ρ + ΓµνλΓλρσ − ΓµρλΓλνσ. (42)

This tensor is supposed to measure the curvature of the underlying manifold since it is proportional to
the rate of change (acceleration) of separation of a family of geodesics (recall such a family of geodesics
are analogous to parallel straight lines in flat space)

Note at this point we have not yet proven that the indexed object (42) which I declared to be the
Riemann tensor is indeed a tensor, especially because it is made up of non-tensor object such as the
Levi-Civita connection and the derivatives of the Levi-Civita connection. Presently we will see that the
object (42) can be expressed in a form such that its tensor properties are completely apparent and this is
how most texts on Riemannian Geometry introduce the Riemann tensor,

[∇ν ,∇ρ] êσ = Rµ σνρêµ. (43)

where we have used the commutator,

[∇ν ,∇ρ] êσ ≡ ∇ν (∇ρêσ)−∇ρ (∇ν êσ) .

Since the LHS of equation (43) is a pure tensor being made up of unit vector, êρ and covariant derivatives,
the RHS must be a tensor as well. This immediately means Rµ σνρ is a tensor.
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Check: Here we check that indeed the second definition (43) indeed gives us back the form (42) we
obtained from the geodesic deviation equation. First we evaluate,

∇ν (∇ρêσ) = ∇ν
(

Γλρσ êλ

)
=

(
∇νΓλρσ

)
êλ + Γλρσ (∇ν êλ)

= ∂νΓλρσ êλ + ΓλρσΓσνλ êσ.

where we have used Leibniz rule from going from line 1 to line 2, and then in going from line 2 to line 3,
we have used the face that covariant derivative of a pure number such as Γλρσ is same as partial derivative,

∇νΓλρσ = ∂νΓλρσ.

Thus the lhs of (43)

[∇ν ,∇ρ] êσ = ∇ν (∇ρêσ)−∇ρ (∇ν êσ)

=
(
∂νΓλρσ êλ + ΓλρσΓσνλ êσ

)
−
(
∂ρΓ

λ
νσ êλ + ΓλνσΓσρλ êσ

)
=

(
∂νΓµρσ − ∂ρΓµνσ + ΓλρσΓµνλ − ΓλνσΓµρλ

)
êµ

= Rµ σνρêµ.

So we have just shown that the two definitions of the Riemann tensor are equivalent at the end of the
day. Now although by definition the Riemann tensor is a (1, 3)-type tensor, it is more favorable in the
research literature as well as some modern textbooks to lower the upstairs index and make a (0, 4)-type
tensor, namely,

Rµνρσ = gµλR
λ
νρσ.

By abuse of language we will also call this (0, 4) tensor as the Riemann Curvature tensor.

Homework:
Compute the Riemann tensor components for a two-dimensional manifold, namely the 2-sphere, given

by the metric (of radius R),
ds2 = R2

(
dθ2 + sin2 θ dφ2

)
.

You will first need to compute, the Levi-Civita connection, Γµνλ and then plug them in (42).

5.1 (Anti)Symmetry Properties of the Riemann Tensor

1. Antisymmetry of the last pair of indices: This is evident from the definition (42) itself

Rµ σνρ = −Rµ σρν .

or equivalently,
Rµσνρ = −Rµσρν .

This holds for any type of connection, Γ.
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2. Antisymmetry of the last three indices (aka the first Bianchi Identity):

Rµ σνρ +Rµ νρσ +Rµ ρσν = 0. (44)

or equivalently,
Rµσνρ +Rµνρσ +Rµρσν = 0.

This result holds for a “Torsion-free” connection i.e. any connection which is symmetric,

Γλµν = Γλνµ.

(Check this by evaluating

[[∇µ,∇ν ] ,∇ρ] Φ = −3Rσ ρµν∂σΦ− 2Γα[µν]∇α(∂ρΦ) + 2∂ρ

(
Γα[µν]∂αΦ

)
.

and then applying Jacobi identity for covariant derivatives on a scalar, i.e [[∇µ,∇ν ] ,∇ρ]+[[∇ν ,∇ρ] ,∇µ]+
[[∇ρ,∇µ] ,∇ν ] Φ = 0).

3. Antisymmetry wrt to the first pair of indices:

Rµσνρ = −Rσµνρ.

This only holds for Metric compatible and torsion-free connection, i.e. Levi Civita connection. (One
can prove this by taking trace of Rµ σνρ wrt to the first and second indices and then showing that
it vanishes, i..e. δσµ R

µ
σνρ = 0.)

4. Symmetry wrt to exchange of first pair with second pair of indices,

Rµν|ρσ = Rρσ|µν .

This is a result of the first Bianchi identity and the symmetry wrt the last two pair of indices.

5. Antisymmetry wrt derivatives, aka the second Bianchi Identity:

∇µRλ σνρ +∇νRλ σρµ +∇ρRλ σµν = 0. (45)

This can be proved by using the Jacobi Identity for commutators,

([∇µ, [∇ν ,∇ρ]] + [∇ν , [∇ρ,∇µ]] + [∇ρ, [∇µ,∇ν ]])V λ = 0.

First we simplify each term in the above sum in the LHS

[∇µ, [∇ν ,∇ρ]]V λ = ∇µ
(

[∇ν ,∇ρ]V λ
)
− [∇ν ,∇ρ] (∇µV )λ

= ∇µ
(
Rλ σνρV

σ
)
−Rλ σνρ∇µV σ +Rσ µνρ∇σV λ

=
(
∇µRλ σνρ

)
V σ +Rσ µνρ∇σV λ,

Then we add all three terms and next we use Bianchi Identity I, Eq. (44) . This will give us (45).
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Using the first four identities, one can show that the number of independent components of the
Riemann Curvature tensor in D-spacetime dimensions is,

D2
(
D2 − 1

)
12

.

Check: Naively, the Riemann Curvature tensor, Rµν ρσ has D4 components since each of the four indices
can take D values. But then it fails to take into account the symmetry and antisymmetry property of
the Riemann Curvature tensor. The antisymmetry of the first pair of indices,µν tells us that the first
pair can take only N = DC2 values. So for the second pair of indices, ρσ. But then the symmetry of
exchanging the first pair, µν with the second pair, ρσ tells us the number of independent components of
this four tensor object could only be

N(N + 1)

2
=
D(D − 1)

(
D2 −D + 2

)
8

.

But then there is still the first Bianchi Identity, which gives constraints if we pick four different values for
µνρσ i.e. DC4. We need to remove these DC4 from the possible, N(N + 1)/2 which gives us the number
of independent components of the Riemann tensor to be:

N(N + 1)

2
− DC4 =

D2(D2 − 1)

12
.

6 Einstein Field Equations

In general relativity, gravitation is the curvature of spacetime caused by a source which is the stress-
energy-momentum tensor. So we would like some equation which has the cause i.e. Tµν on the RHS and
the effect i.e. some curvature related quantity on the LHS, i.e. related to the Riemann tensor, Rλ µρν .
But clearly we cannot have some equation like,

Rλ µρν
?
= Tµν

because the indices on both sides are not the same. So first and foremost we have to contract two indices
in the lhs. So we introduce the Ricci tensor as a contraction of Riemann tensor:

(Ric)µν ≡ R
λ
µλν .

Note that this tensor is symmetric in it’s indices,

(Ric)µν = (Ric)νµ .

Check:

(Ric)µν = gρσRρµσν

= gσρRσνρµ

= (Ric)νσ .
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Since the indices on both sides match, could we have an equation for general relativity such as,

(Ric)µν
?
= Tµν

modulo some proportionality constant. But even this equation cannot be correct, because the RHS being
a conserved current, obeys

∇µTµν = 0,

while,
∇µ (Ric)µν 6= 0.

Check:
We take the second Bianchi Identity, i.e.

∇µRλ σνρ +∇νRλ σρµ +∇ρRλ σµν = 0.

and we multiply both sides by, δνλ to obtain

∇µ (Ric)σρ +∇λRλ σρµ −∇ρ (Ric)σµ = 0,

to which we multiply both sides by gµσ,

∇µ (Ric)µρ +∇λ (Rλσρµg
µσ)−∇ρ (Ric) = 0

=⇒ ∇µ (Ric)µρ +∇λ (Rρµλσg
µσ)−∇ρ (Ric) = 0

=⇒ ∇µ (Ric)µρ +∇λ (Rµρσλg
µσ)−∇ρ (Ric) = 0

=⇒ ∇µ (Ric)µρ +∇λ (Ric)ρλ −∇ρ (Ric) = 0

∇µ (Ric)µρ +∇λ (Ric)λρ −∇ρ (Ric) = 0.

So at the end we have,

∇µ (Ric)µρ =
1

2
∇ρ (Ric) , (46)

where (Ric) is the trace of the Ricci tensor, (Ric) = gµν (Ric)µν .
But notice using the fact that covariant derivative of the metric vanishes we can rewrite the RHS,

∇ρ (Ric) = gρµ∇µ (Ric) = ∇µ (gρµ (Ric)) .

So then using this form in the RHS (46) we have,

∇µ (Ric)µρ = ∇µ
(

1

2
gµρ (Ric)

)
,

or,

∇µ
[
(Ric)µρ −

1

2
gµρ (Ric)

]
= 0. (47)
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This leads us to define the Einstein Tensor ,

Gµν = (Ric)µρ −
1

2
gµρ (Ric) , (48)

which is divergence-free,
∇µGµν = 0.

So now we have a candidate equation,
Gµν = c Tµν (49)

since both sides are:

• two-index object which are symmetric in the indices,

• both sides are divergence-free.

It so turns out that the demanding that the Eq. (49) reduce in the limit of weak gravitational fields and
low velocities to the non-relativistic Newtonian form,

∇.g = −4πGN ρ,

(where the∇ is the three-dimensional gradient operator, g is the gravitational field, ρ is the mass-density
and GN is the Newton’s universal gravitational constant ), one needs to choose,

c = 8πGN .

Thus we arrive at the final form of the Einstein’s field equations for gravitation ,

(Ric)µν −
1

2
gµν (Ric) = 8πGN Tµν . (50)

7 Gauss Theorem and Stokes Theorem for curved spacetimes: Con-
servation Laws

Now we face a little problem. General coordinate invariance demands that the continuity equation be
changed to,

∂µj
µ → ∇µjµ.

However if we naively integrate this general covariant form of the continuity equation over all spacetime
as we did in special relativity it does not give us a conservation law,

0 =

ˆ
d4x∇µjµ =

ˆ
d4x

(
∂µj

µ + Γµµρj
ρ
)

=

ˆ
d4x ∂µj

µ +

ˆ
d4x Γµµρj

ρ

=

(ˆ
d3x j0

∣∣∣∣
tf

−
ˆ
d3x j0

∣∣∣∣
tf

)
+

ˆ
dt

(ˆ
d3x∇ · j

)
+

ˆ
d4x Γµµρj

ρ.
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If we define the charge to be the volume integral of the charge,

Q ≡
ˆ
d3x j0.

Then we have,

(Q(tf )−Q(ti)) +

ˆ
dt

(ˆ
d3x∇ · j

)
+

ˆ
d4x Γµµρj

ρ = 0

Using Gauss theorem in 3D, we see that the second term vanishes due to the surface integral at infinity
since we assume there are no sources or sinks at spatial infinity (“localized sources” i.e. nothing is coming
in or going out through spatial infinity),

ˆ
d3x∇ · j =

"

∞

j · n̂ dS = 0.

Thus, we get,

Q(tf ) = Q(ti)−
ˆ
d4x Γµµρj

ρ.

i.e. initial and final charge is not the same or charge is not conserved. because of the term which contains
the connection. In flat space, this term was not there and we had.,

Q(tf ) = Q(ti),

i.e. conservation of charge.

So one wonders what went wrong, and the answer is that - the volume element we used, d4x is not
general covariant and instead we need to use,

ˆ
d4x
√
−g.

i.e. define charge to be,

Q =

ˆ
d3x
√
−g j0

Let’s see how this leads to resurrection of the conservation law. First we note the following identity,

Γµµρ =
1

2
gµβgµβ,ρ =

∂ρ (
√
−g)√
−g

(51)
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Again we start by integrating the covariant continuity equation,

0 =

ˆ
d4x
√
−g ∇µjµ

=

ˆ
d4x
√
−g

(
∂µj

µ + Γµµρj
ρ
)

=

ˆ
d4x
√
−g

(
∂ρj

ρ +
∂α (
√
−g)√
−g

jρ
)

=

ˆ
d4x ∂ρ

(√
−g jρ

)
=

(ˆ
d3x
√
−g j0

∣∣∣∣
tf

−
ˆ
d3x
√
−g j0

∣∣∣∣
tf

)
+

ˆ
dt

ˆ
d3x∇ ·

(√
−gj

)
= Q(tf )−Q(ti) +

ˆ
dt

"

∞

√
−g j · n̂ dS

= Q(tf )−Q(ti).

Thus now gave recovered our conservation law,

Q(tf ) = Q(ti).

An important by-product of our discussion is the 4-dimensional version of the Gauss-theorem i.e.if we
integrate over all space and all times, i.e. tf → +∞, ti → −∞.

ˆ
d4x
√
−g ∇µjµ =

ˆ
d4x ∂ρ

(√
−g jρ

)
= Q(+∞)−Q(−∞) +

ˆ ∞
−∞

dt

"

∞

√
−g j · n̂ dS.

So in the last line we have an integral over spatial and temporal infinity.

Caveat: This result cannot be generalized to tensors of arbitrary rank i.e.

ˆ
d4x
√
−g ∇µ (Tµµ2....µp) 6=

ˆ
d4x ∂µ

(√
−g Tµµ2....µp

)
.

So there is no Gauss theorem for arbitrary rank tensors.

However one can generalize the Stokes theorem to arbitrary rank antisymmetric tensors. This
is because one can show that for an antisymmetric tensor, say Aµν....σ which is antisymmetric in all its
indices, µ, ν, . . . σ ˆ

d4x
√
−g ∇µAµν....σ =

ˆ
d4x ∂µ

(√
−g Aµν....σ

)
and then again integrating over all space and time.

Homework:
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Check that for a two-index antisymmetric tensor,

√
−g ∇µAµν = ∂µ

(√
−g Aµν

)
.

Hint: Expand the covariant derivative and use the symmetry property of the downstairs indices of the
Levi-Civita connection, Γµνλ = Γµλν .
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