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1 Linearized Einstein Equations

Homework Problem: Consider a decomposition of the metric around Minkowski space,

gµν = ηµν + hµν .

Show that upon expanding Einstein field equations and retaining only the terms which are linear
in hµν gives the Fierz-Pauli equation,

�hµν + (∂µ∂νh− ηµν�h)− (∂µ∂
αhαν + ∂ν∂

αhαµ) + ηµν∂
α∂βhαβ = −κTµν (1)

and that the metric transformation law,

gµν(x)→ g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x)

for a small diffeomorphism,
x′µ = xµ + Λµ(x).

becomes in the linear limit (linear in both h and in Λ), the familiar spin-2 gauge symmetry,

hµν(x)→ h′µν(x) = hµν(x)− ∂µΛν(x)− ∂νΛµ(x). (2)

1.1 “Trace-reversed” field

One can define/introduce a new field, h̄µν by,

h̄µν = hµν −
1

2
ηµνh (3)

and rewrite the Fierz-Pauli equation in these variables. This simplifies/shortens the equation a
little bit,

�h̄µν −
(
∂µ∂

αh̄αν + ∂ν∂
αh̄αµ

)
+ ηµν∂

α∂βh̄αβ = −κTµν . (4)

However, the gauge transformation (2) now reads,

h̄µν → h̄′µν = h̄µν − ∂µΛν − ∂νΛµ + ηµν (∂.Λ) . (5)

Sean Carroll mentions in his book/notes that this barred field is sometimes called as the “trace-
reversed” gravitational field (potential) because, its trace, h̄ ≡ ηµν h̄µν according to the definition

h̄ = −
(
D

2
− 1

)
h

i.e. has the opposite sign to that of the Fierz-Pauli field, hµν .
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2 Gravitational Waves

2.1 Warm up example: EM waves

Again by way of example we recall the wave solutions in electromagnetism. There, one can use the
U(1) gauge freedom, to choose a gauge condition. We use this to get to the Lorenz gauge condition,

∂µA
µ = 0, (6)

which simplifies the field equation in the absence of sources, j = 0 to the wave equation with
wave-velocity c,

∂2Aµ = 0.

However we will see in the following that Lorenz gauge is only a partial gauge fix. To see this we
conduct a gauge transformation by a function, say χ i.e.

Aµ → A′µ = Aµ + ∂µχ (7)

we see that gauged transformed potential, A′µ has a divergence

∂µA
′µ = ∂µA

µ︸ ︷︷ ︸
=0

+∂2χ = ∂2χ.

Thus if ∂2χ = 0, then even after the gauge transformation, the new or transformed field A′µ still
satisfies Lorenz gauge condition, ∂µA

′µ = 0. So the Lorenz gauge does not uniquely fix the gauge
and we have a residual degree of freedom, χ which is a harmonic function. So the total number of
unrestrained/independent degrees of the EM field is,

D︸︷︷︸
d.o.f. of Aµ

− 1︸︷︷︸
Lorenz gauge

− 1︸︷︷︸
Residual gauge

= D − 2.

Now let’s look at plane wave solutions. If we substitute a plane wave solution as an ansatz,

Aµ = εµ exp(ikαx
α), (8)

the equation of motion, namely, ∂2Aµ = 0 implies,

∂2 [εµ exp (ikαx
α)] = 0,

=⇒ εµ∂2 [exp (ikαx
α)] = 0,

=⇒ −εµk2 exp (ikαx
α) = 0.

This has to be true for arbitrary x, and since εµ 6= 0, the only solution is k2 ≡ kαkα = 0 =⇒ k0 =
±|k|. Recall that the by definition, k0 = ω/c, thus we have,

ω = c|k|.

Thus the waves travel will the invariant signal speed, c. Further, plugging the plane wave ansatz
(8) the Lorentz gauge condition (6) gives,

kµε
µ = 0. (9)
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This implies εµcannot be arbitrary, they must satisfy momentum space Lorentz gauge constraint
(9). To see which polarizations are allowed, we consider the wave to be moving along z-axis,
i.e. k = k ê3. Then the wave equation forces, k0 = ±k. Let’s work with the upper sign, i.e.
kµ = (ck, 0, 0, k), which represents planar fronts propagating in the direction of the positive z-axis.
Then the Lorentz gauge condition (9) gives,

−ε0 + ε1 = 0.

Thus we can have three independent solutions,

ε(1) = (0, 1, 0, 0), ε(2) = (0, 0, 1, 0), ε(3) = (1, 0, 0, 1).

These are the three polarization vectors, namely the transverse polarizations, ε(1), ε(2) and longitu-
dinal polarization, ε(3). We call it longitudinal since it is parallel to the wave vector, εµ(3) = ωkµ.

This longitudinal polarization, ε(3) gives, Fµν = 0 and hence can be omitted (Check
this). Thus we recover the result that there are only 2 d.o.f. in the EM wave.

We can generalize the discussion to D spacetime dimensions and wave propagation in arbitrary
direction, say k. In such case the wave vector is, kµ =

(
k0 = c|k|,k

)
consistent with the solution

to the wave equation, kµk
µ = 0 then gives, ω = ±k and again we take the upper sign. Then one

subset of the polarization vectors, εµ which satisfy Lorenz gauge, i.e. εµkµ = 0 can be taken to be:

εµ⊥ = (0, ε) , ε · k = 0. (10)

Given/for a fixed k, this condition says that any spatial vector, ε which is perpendicular to k is an
allowed solution. Since there are (D−2) directions perpendicular to k-vector, there are (D−2) such
independent polarizations each of which are spatially orthogonal to the direction of the propagation
of the wave and these can be chosen to be perpendicular to each other as well. We will denote
these by an index, i:

εµi = (0, εi) , i = 1, . . . , (D − 2). (11)

These are, for obvious reasons, called the transverse polarizations. However, in addition to the
transverse polarizations, there is one more solution, say εµ(D−1), to the constraint (9) - one which is

parallel/proportional to the wave-vector,

εµ(D−1) =
1

ω
kµ.

This also satisfies Lorentz gauge, εµ(D−1)kµ = 0 since, kµ itself is a null vector. Thus we have

constructed/exhausted all possible independent plane wave polarizations. However we know that
Lorenz gauge does not eliminate all redundant degrees of freedom i.e. it is only a partial gauge fix.
The residual gauge freedom within Lorenz gauge is a gauge transformation by a harmonic function,
say χ. Now any harmonic function i.e. one which satisfies ∂2χ = 0, can be expressed in the form
of plain waves again

χ(x) = χ̃eik.x, k2 = 0,

with a constant, χ̃. After doing this residual gauge transformation by the function, χ the polariza-
tion vector, εµ gets gauge-transformed to,

εµ → ε′µ = εµ + ikµχ̃.
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In particular, we can chooseχ̃ = i/ω. That means,

εµ → ε′µ = εµ − 1

ω
kµ.

In particular, the polarization, εµ(D−1) gets killed since it is equal to kµ/ω,

εµ(D−1) → ε′µ(D−1) = 0.

Polarizations such as εµ(D−1) which can be by gauge transformed zero (no field) solution is called a
pure gauge , since it is not a physical solution but an artifact of incomplete gauge fixing.

2.2 Gravitational Waves

For the case of gravity we can also adopt such a Lorentz covariant gauge condition, called the
Hilbert gauge or de Donder gauge or Fock gauge or Einstein gauge or simply the Harmonic gauge,

∂µh̄µν = ∂µ

(
hµν −

1

2
ηµνh

)
= 0. (12)

then the Equation of motion (4) becomes the wave equation,

∂2h̄µν = 0. (13)

However, just like the electromagnetic case, this gauge condition does not fix the field completely
and there remains a class of residual gauge transformations. Let’s say that we have chosen our
field, h̄µν to satisfy the de Donder gauge. Now if we further gauge transform by an arbitrary vector
field χµ(x), the gauge transformed field is given by (cf (5)),

h̄µν → h̄′µν = h̄µν − ∂µχν − ∂νχµ + ηµν (∂.χ) ,

while the four-divergence of this new/gauge-transformed field is,

∂µh̄′µν = ∂µh̄µν︸ ︷︷ ︸
=0

−∂µ∂µχν −����∂µ∂νχν +������ηµν∂
µ (∂.χ)

= −∂2χν .

Now, if the components of the vector field, χµ are harmonic functions, then, ∂µh̄′µν = 0 as well i.e.
is also satisfies de Donder gauge. Thus even within the Harmonic gauge, we have the residual gauge
freedom choose D number of harmonic functions (the D components of χµ). Once we fix, χµwe
have fixed the gauge completely. Therefore, the total number of independent degrees of freedom of
the gravitational field is,

D(D + 1)

2︸ ︷︷ ︸
d.o.f of symmetric tensor

− D︸︷︷︸
Lorenz gauge conditions

− D︸︷︷︸
Residual gauge conditions

=
D(D − 3)

2
.

In 3+1 dimensions, D = 4, hence, the number of degrees of freedom is, 4(4 − 3)/2 = 2. To
completely fix the gauge, we choose the a χµso that the gauge transformed field, h̄′µν satisfies,

h̄′ ≡ ηµν h̄′µν = 0, h̄′0i = 0. (14)
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Here the index i only runs over the spatial directions. This sub gauge of the de Donder gauge is
called the transverse traceless gauge.

Next, we look for plane wave solutions in the transverse traceless gauge. We plug in the plane-
wave ansatz, namely,

h̄µν = εµν e
ikµxµ , (15)

in the in the field equations (13), and get the condition,

k2 ≡ kµkµ = 0, (16)

i.e. the wave vector is a null vector, and hence gravitational waves, just like EM waves, propagate
with the invariant speed, c. The symmetric tensor εµν is called Polarization tensor. The gauge
condition (12) gives us the restriction on the polarization tensor,

εµνkµ = 0. (17)

Under the residual gauge transformations (i.e. by a vector field, χµ, whose components are harmonic
gauge), i.e.

χµ = χ̃µe
ikαxα ,

where χ̃µ is independent of the position and kαis the gravitational wave vector again, the polariza-
tion vector transforms to,

ε′µν = εµν − ikµχ̃ν − ikνχ̃µ + i ηµνk.χ̃. (18)

To explicitly construct the polarization tensor in transverse traceless gauge in general spacetime
dimensions, D, we make use of the transverse polarization vectors, Eq. (11), of the EM wave One
can take symmetric bilinear products of these EM wave transverse polarization tensor, and the
wave vector to write down a basis of candidate polarization tensors for the gravitational waves that
satisfy harmonic gauge:

ε(ij)µν = ε(i)µε(j)ν + ε(i)νε(j)µ, i 6= j (19)

ε(ii)µν = ε(i)µε(i)ν . (20)

ε(i0)
µν = ε(i)µkν + ε(i)νkµ, (21)

and
ε(00)
µν = kµkν . (22)

Here as before i, j run over the transverse directions, i = 1, . . . , (D − 2). These satisfy Harmonic
gauge because the EM polarization vectors, as well as the wave-vector itself satisfy Lorenz gauge.
However both εµν(i0) and εµν(00) can be shown to be “pure gauge”, i.e. can be removed by doing a

residual gauge transformation (18) to εµν = 0. To show εµν(i0) is pure gauge, one needs to choose,

χ̃µ = −iε(i)µ,

while to show εµν(00) is pure gauge, one needs to choose,

χ̃µ = − i
2
kµ.
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Thus, we are left with just the polarizations, ε(ii) and ε(ij) defined through equations (20) and

(19). There are
(
D−2

2

)
+ D − 2 = (D−2)(D−1)

2 number of these polarization tensors. Let’s check if
these polarization tensors satisfy the transverse traceless subgauge conditions. Note that since the
transverse polarizations of EM waves have no time-component, ε0i = 0, these automatically satisfy
the subgauge condition ε0ν = 0. The Polarization tensors, εµν(ij) are definitely traceless, but the εµν(ii)
are not. However it is easy to construct traceless combinations,

εµν(ii) → (D − 2) εµ(i)ε
ν
(i) −

D−2∑
j=1

εµ(j)ε
ν
(j). (23)

This tracelessness reduces the number of independent εµν(ii)’s by one as the last one can be expressed
in terms of the others,

εµν(D−2,D−2) = 1−
D−3∑
j=1

εµ(jε
ν
(j).

So the total number of independent polarization tensors which are transverse and traceless, given
by εµν(ij) of equation (19) and by εµν(ii) as in equation (23), are(

D − 2

2

)
+D − 3 =

(D − 2) (D − 3)

2
+D − 3 =

D (D − 3)

2
.

As an example, let’s do the D = 4 i.e. 3 +1 dimensional spacetime. Here, D − 2 = 2 so the
transverse indices, i, j = 1, 2. Let’s choose the direction of propagation of the wave to be z-axis,
then wave vector is, kµ = (k, 0, 0, k) . Then EM wave transverse polarizations for this case an be
chosen to be,

εµ(1) = (0, 1, 0, 0) , εµ(2) = (0, 0, 1, 0)

Then two independent polarization tensors for the gravitational wave are (in matrix form)

ε(12)
µν = ε(1)µε(2)ν + ε(2)µε(1)ν =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 ,

and

ε(11)
µν = 2ε(1)µε(1)ν −

2∑
j=1

ε(j)µε(j)ν = ε(1)µε(1)ν − ε(2)µε(2)ν =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 .

Homework Problem: Write down the independent gravitational polarization ten-
sors in in D = 5 spacetime dimensions i.e. 4 space and 1 time using the same method
as above.
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2.3 “+” and “×” type polarizations of gravitational waves

In the literature for D = 4, the ε(11) polarization of the gravitational wave is known as the + type,
denoted by ε⊕, while the ε(12) type polarization is referred to as the ε⊗ (“cross”). The point of this
nomenclature is as explained in what follows. Consider a gravitational wave incident on a bunch
of point particles at rest on the 12-plane i.e. xy.-plane. Their relative motion as a result of this
gravitational wave disturbance incident on them is given by the geodesic deviation equation,

D2Sµ

Dτ2
= Rµ σνρT

σT νSρ,
D2

Dτ2
= (T.∇)2 .

In the 12 plane, the separation vector is, Sµ =
(

0, ∆x1

∆s ,
∆x2

∆s , 0
)

. Now for particles at rest and in

general for slow moving particles, T ν = dxν

dτ = (γ, γv) ≈ (1, 0, 0, 0). Also in the slow approximation,
D
Dτ ≈

∂
∂τ ≈

∂
∂t . Thus, the geodesic deviation equation becomes,

∂2Sµ

∂t2
= Rµ 00ρS

ρ.

The linearized Riemann tensor is,

Rµ 00ρ =
1

2

(
∂2

0h
µ
ρ − ∂ρ∂0h

µ
0 + ∂µ∂ρh00 − ∂0∂

µh0ρ

)
.

Let’s consider the case when µ = 1, i.e.,

∂2S1

∂t2
= R1

00ρS
ρ.

Now,

R1
00ρ =

1

2

(
∂2

0h
1
ρ − ∂ρ∂0h

1
0 + ∂1∂ρh00 − ∂0∂

1h0ρ

)
In transverse traceless case, h1

0 = 0. Also ρ = 1, 2 for S being in the 12-plane. Then,

R1
001 =

1

2

(
∂2

0h
1
1 − ∂1∂0h

1
0 + ∂1∂1h00 − ∂0∂

1h01

)
R1

002 =
1

2

(
∂2

0h
1
2 − ∂2∂0h

1
0 + ∂1∂2h00 − ∂0∂

1h02

)
For the ε(11) polarization, h1

1 = C+e
ik.x, and R1

001 = 1
2∂

2
0h

1
1, R

1
002 = 0, hence the geodesic

deviation equation becomes,
∂2S1

∂t2
= R1

001S
1

∂2S1

∂t2
= R1

001S
1

=
1

2
∂2

0h
1
1S

1

=
1

2

∂

∂t2

(
Ceik.x

)
S1.
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Similarly noting that for the ε(11) polarization, h2
2 = −C+e

ik.x, one can show,

∂2S2

∂t2
=

1

2
∂2

0h
2
2S

2.

=
1

2

∂

∂t2

(
−Ceik.x

)
S2.

The solution to these equations to lowest order are,

S1(t) =

(
1 +

C+

2
eik.x

)
S1(0),

S2(t) =

(
1− C+

2
eik.x

)
S2(0).

Thus, particles initially separated in the x1 or x direction will oscillate back and forth in the x
direction, and while those with an initially separation along y direction with oscillate in the y-
direction. That is, if we start with a circular ring of stationary particles in the xy plane, as the
wave passes they will bounce back and forth in the shape of a “+”.

For the ε(12) polarized gravitational waves, h12 = h21 = C×e
ik.x, and the geodesic deviation

equations lead to,

S1(t) = S1(0) +
C×
2
eik.xS2(0),

S2(t) = S2(0) +
C×
2
eik.xS1(0).

That is, if we start with a circular ring of stationary particles in the xy plane, as the wave passes
they will bounce back and forth in the shape of a “×”.
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