PH 6548 /EP 4258: Cosmology Lecture 4
Single Component and Multi-component Universes*

November 25, 2019

In the previous lectures we have seen that the dynamics of spatially homogeneous and isotropic
universes are described in general relativity by the Friedmann equation,
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the matter-energy continuity equation,
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and an equation of state for each type of matter-energy source,
P, =wpy (3)

where, P, and p,, are the partial pressure and energy density respectively of that component /type
of matter-energy source. The total pressure is then given by the sum over the components,
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and total energy density is also given by a sum over all the components/different sources,
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Evidently, for such a multi-component universe (i.e. one with many different sources of matter-
energy), one cannot write down a direct equation relating total pressure, P, and total energy density,
p. Consequently, solving the fluid continuity equation, (2) becomes very difficult. To simplify the
situation we will assume that the different components of matter-energy do not interact, and their
energy-momentum is separately conserved, i.e. the fluid continuity equation holds separately for
each component,
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which can be readily solved to obtain the evolution of energy density,

pu(t) = %‘ (4)

*Please communicate any typos spotted to Shubho Roy @ sroy@iith.ac.in.



Here pyo = pw(to) is the energy density of matter-energy source component w in the present
day universe, i.e. at time, tg. From this solution, we note that, energy density of matter gets
diluted with time as a3, energy density of radiation falls off with time as a—*, while the energy
density of vacuum energy remains constant over time. Curvature term, when treated as another
source of matter-energy, and described by an energy densityp, = —%i% evidently falls off with
time as a~2. The same conclusion can be arrived at from the solution (4) when one recalls that
for curvature, w = —%. These fall off behaviors are intuitively obvious. For nonrelativistic matter
(dust), the number of particles in the universe remains constant as the universe evolves, while the
volume goes as a® and hence the energy density, which for nonrelativistic matter is same as mass
density, must go as

mass constant
volume a

For radiation, say light wave/photons, the energy is given by, E(t) = hv(t) = % As the universe

expands, comoving lengths/distances scale as a(t), which implies wavelength of light gets stretched
to, A(t) = a(t) Ao which further implies the energy of a photon falls off with the scale factor as,
E(t) = %. However the volume of the universe grows as a®(t). Then the energy density of
radiation must go as,
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For vacuum energy i.e. the energy of empty space, the energy density must remain constant be-
cause as universe expands it creates energy at a rate proportional to the amount of space created,

i.e. a3, i.e. at the same rate with which volume grows. So the energy density stays same at all times.

To make further progress one has to now solve the Friedmann equation for the scale factor, a(t),
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Again this seems like a very complicated equation to solve because the RHS is a sum of different
(inhomogeneous) powers of a., corresponding to different components/sources of matter-energy. So
to simplify and build intuition we will consider the situation when one component is overwhelmingly
abundant and drives the expansion of the universe, i.e. we will only keep that component in the
RHS of the Friedmann equation and set to zero the contribution from the other sources,
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Such universes are aptly called single component universes. (Note here we have also included the
curvature as a source of matter-energy). This assumption might seem unjustified, however as we
have seen before, different components of matter-energy get diluted at different rates and it is
possible to imagine eras where one component is most abundant while others are not as abundant.
For example, at early times in the universe when a < 1, radiation is the most abundant component

because, p, ~ ﬁ while at late times, when a > 1, then vacuum energy is most abundant, as matter,
radiation and curvature gets diluted away.




1 Single component universes

At certain times (epochs) of cosmic history one component of matter-energy is overwhelmingly
abundant (i.e. has energy density much greater than the others) and that component effectively
drives the expansion rate of the universe, we can ignore the role of other components, i.e. set their
contribution to energy density to zero. The Friedmann equation for such single component universe

simplifies greatly, ,
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where we have also included /regarded as a source of matter energy with energy density and pressure,
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So for curvature component, w = —%. Sincep,, (t) has already been solved as a function of the scale

factor in Eq. (4), the Friedmann equation for the single component universes turn into,
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which can be immediately solved,
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t.is the time for which ¢ = 0, i.e. space crunches to a point, which is called the Big Bang
singularity. By convention, we will set ¢, = 0. Finally we can trade the constant coeflicient for
the current cosmic time, tg by using the boundary condition, a(tg) = 1. Then the solution to the
scale factor in the single component universe is,

a(t)z(t)‘“ﬁ”,w#—l. (5)
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As indicated this solution is not valid when, w = —1 i.e. for vacuum energy. The solution to
Friedmann equation for vacuum energy is,

a(t) = Cexp (“Wt>'

Again using the boundary condition, a(tg) = 1, we determine the constant,

a(t) = exp [\/§ (t— to)] : (6)

This solution is only valid for a positive cosmological constant, A > 0. Since for this case, a — 0
only when ¢ — —o0, this universe does not have a beginning, or in other words this is a Steady
State Universe.



Source (component) w ’; “;(? a(t) Type of Universe
Matter (dust) 0 a=3(t) x t3 Big Bang
Radiation % a=4(t) x t2 Big Bang
(Positive) Curvature! —% a=?(t) xt Steady State (Fake Big Bang)
(Positive) Vacuum Energy? | —1 | constant | oc exp < gt) Steady State

Table 1: Summary of features of single component universes

The Hubble parameter for these single component universes are,
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In particular the Hubble constant is related to the current time, ¢y by,
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Thus in terms of the Hubble constant the age of the universe, g
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Thus, in these universes if one measures the Hubble parameter today it immediately determines
the present age of the universe. Table (1) contains a summary of the expansion history of various

different single component dominated universes.

1.1 Galactic Redshifts and Horizon sizes in a single component universe

Consider light emitted from a source (galaxy) at cosmic time, ¢, , which is observed by an observer
at present cosmic time, i.e. t, = to and is observed at a redshift, z. We have the well known
redshift-scale factor relation,

1+z=a'(t)

and substituting the scale factor expressions (5) and (6) in the RHS, one has,
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!This positive curvature empty universe is also known as the Milne Universe. One might suspect, an empty
universe has to be Minkowski spacetime, R*!. Indeed one can show that the Milne universe is Minkowski spacetime
in some funny coordinate chart.

2This positive vacuum energy universe is also known as the Einstein de Sitter Universe. One might suspect,
this represents one half the pure de Sitter spacetime.
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which determines the time of emission
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In terms of the observed quantities, namely the Hubble constant, Hy and galactic redshifts, z, the
emission time,
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Since the redshift is a monotonic function of time the light was emitted, one can trade the redshifts
for time.

The comoving separation between the emitter and observer according to the FLRW metric is,
fo dt
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Using the scale factor expression expressions (5) and (6), we get the respective comoving separation
distance,
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In terms of the observable quantities, the redshifts (using 9) and the Hubble constant (7),
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The physical spatial distance of separation between the source and the observer, D(t) at some
cosmic time, ¢t can be extracted from the comoving distance by

Since the present day, scale factor, a(tp) is unity by definition, the present day distance of separa-
tion is then same as the comoving separation,
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which leads to Hubble’s law of galactic redshifts for the big bang universes (w # —1),
z = Hy D(tg).
However for high redshifts galaxies, z > 1,
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and thus one gets a Hubble-type law for steady state universes now,

Z = H() D(to).

The cosmological horizon distance, dj is defined to be the farthest distance from which light
can reach an observer at current time, ty. It can be obtained by taking the limit®, z — oo,
dp = lim,_,o D(tg)
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Alternatively, in terms of the Hubble constant, Hy,
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Comments

e For the Einstein de Sitter universe, the horizon size is infinite and one can see galaxies which
are infinitely far away. This makes sense because it is a steady state universe. For such a
universe there will be no Olbers’ paradox, as night sky will be as bright as day sky.

e The situation seems paradoxical for the curvature only (empty) universe. The curvature only
universe (Milne universe) seems to have a finite age, ¢y counted from a beginning with a bang
at some time in the past chosen by convention to be t = 0. And yet, there is no cosmological

3 Another equivalent way of computing the horizon distance is compute the distance light has traveled since the
universe was around. For single component universes beginning with a bang,
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For the steady state, Einstein de Sitter universe,
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’ Component of matter-energy \ Symbol \ Density Parameter, (2

Baryonic matter B Qpo~ 0.04
Dark matter DM Qpumo ~ 0.26
Total matter (dust) m Qo ~0.3
Microwave background CMB Qcmo ~ 5.0 x 10-°
Neutrino background v Quo~34x107°
Starlight Qstartight =~ 107°
Total radiation 0% Qo ~ 1074
Vacuum Energy A Qa0 ~ 0.7
Total Qo ~1

Table 2: Estimates of the density parameters of various components of matter-energy sources in
the current universe

horizon! To resolve this paradox, recall that the Milne universe is Minkowski space in funny
coordinates. Minkowski space truly speaking has no beginning or end, it is homogeneous in
time as well. Hence for the Milne case there is no real/physical big bang, but the big bang
is due to a choice of coordinates which are ill-defined at ¢ = 0. In reality, light from times
earlier than the apparent big bang ¢ = 0, can cross thru the ¢ = 0 fake singularity and reach
the observer.

2  Multi-component Universes

In the previous section, we considered dynamics of an universe populated by a single component
(source) of matter-energy. A glance at table (2) containing the best estimates of density parameters
reveals our universe is anything but such a single component universe. Our universe contains all
kinds of sources, matter in form of baryonic matter and dark matter, radiation in the form of the
microwave background, the neutrino background as well as starlight, and finally vacuum energy
(perhaps even dark energy). Nevertheless, such a single component model will still be appropriate
for describing the dynamics of our universe in epochs or stages where one source of matter-energy
is overwhelmingly dominant (abundant) compared to the others. Recall that the energy density of
a component or source scales with the scale factor of the universe as,
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Although currently matter (£, ~ 0.3 ) and vacuum energy (250 ~ 0.7) are more dominant
compared to radiation (€2, ~ 10~%), the evolution of density suggests that in the early universe,
when a(t) < 1, radiation was the most dominant component, followed by matter and finally by
vacuum energy. As time went on and the universe expanded, radiation got diluted faster than
matter (and vacuum energy). One has,
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So at a time t,,—, when the scale factor was
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radiation and matter energy-densities were equal. This epoch in the history of the universe is
dubbed as the era of matter-radiation equality. After this time, matter will become more the more
dominant component till at some point it gets diluted to the point that vacuum energy starts
dominating. Since the energy-density of vacuum energy remains constant, ultimately in the future,
when a(t) > 1, the dominant component will be vacuum energy. The matter-vacuum energy
equality happens at a time, ¢,,—5, when the scale factor is,

P 1/3
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In the intermediate times, we have an universe populated with multiple sources of matter-energy.
In today’s lecture we analyze such multi-component universes.

The Friedmann equation for multi-component universes is
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In the present day universe this equation is,
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where pg is total energy density of the present day universe. This then gives us the curvature,
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Substituting form of the curvature back in the Friedmann equation we get,
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Further, substituting Q,,(t) = Qw,ga*?’(l*“’) one gets the following form of the Friedmann equation,
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The formal solution to this equation is,
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The integration cannot be performed exactly and the answer cannot be written in a simple analytic
form. However one can still perform this integral numerically and plot the solution as a graph of a



vs t.

We have already modeled the epochs of the universe when one component was dominant. For
example, the early stages the universe was in a radiation dominated epoch, and after a while by
a matter dominated epoch, and after a further while followed by curvature dominated epoch and
finally in the far future by a vacuum energy dominated epoch. However in the intermediate stages
between two successive such epochs of single component domination, one has a universe where two
components are of equal order in energy density.

3 Matter and Curvature

This case is more of a historical curiosity, such a universe was considered by cosmologists in the
1950’s when the CMB or vacuum energy was not yet known to exist. For this case, we have to set
Qy0=Qr,0 =0, and Q,, 9 = Qp in the solution for the scale factor (12),
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This integration can be performed and an analytic answer can be obtained. But one needs to
consider three different cases:

e Positive Curvature case ({29 > 1) :
Since €2 > 1, K = +1 i.e. a positively curved universe. In this case,
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Making the substitution,
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we obtain the solution,
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We will leave the solution in this parametric form where a = a(z) and t = t(x), instead of
eliminating z to express a as a function of t, a = a(t). It is evident that ¢ is a monotonic
function of x and hence one can regard x itself as a proxy for time. When z = 0 i.e. t =0,
one has a = 0 i.e. the Big Bang singularity when the universe comes into existence. But
a — 0 again as ¢ = 7. Thus the universe collapses to a singularity at a time in the future -
the so called Big Crunch singularity. The cosmic time, t.yynchn, When the universe collapses
into a big crunch singularity is,

s QO —1
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After the bang this universe expands for a while, hits a maximum and then contracts and
collapses to a crunch. The maximum value of the scale factor is reached when x = 7/2,
Qo
Amaz = Qo —1 .

(16)
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Since sin z is symmetric about the point, x = 7/2. The curve of the scale factor as a function
of cosmic time (or z) is symmetric about the maxima value. So the contraction phase is a
time-reversed image of the expansion phase.

e Negative Curvature case () < 1) :

In this case, k = —1, i.e. a negatively curved universe. For this case,
@ da
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In parametric form,
Q
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Just as in the previous (overdense) case, t is a monotonic function of x and we may use x as
a proxy for time. The scale factor vanishes as 2z = 0 (same as t = 0), which is the Big Bang
singularity. However in this case there is no crunch, and the universe continues to expand
forever, a — oo. Likening the universe to be an adiabatically expanding gas of matter, at
infinite volume (scale factor) the temperature hits absolute zero. Such a fate of the universe
is called the Big Chill or the Big Freeze.

e Flat case (2 =1) :
In this case, Kk = 0 i.e. spatially flat universe. But this case does not merit a separate
discussion since this a single component universe (nothing but matter). We already know the
fate of this universe, and the scale factor is given by,

o-(5)"

Just like the underdense case, this universe begins with a Big Bang at t = 0 and ends in a
Big Chill/Freeze.

4 Matter and Vacuum Energy

The current epochs of the universe is dominated by matter and vacuum energy, as evident from
table (2). For this case, we have to set {2, =0, Q9 = 1 (no curvature) and Qg =1 — 0 in the
solution for the scale factor (12),

HotZ/Oa {M da ]1/2

+ (1 — Qmp) a?

To make further analysis we will have to consider two different cases.
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e Positive Cosmological Constant (£, < 1)

In this case, we have a positive cosmological constant, A > 0. The result of the integra-
tion for this case is,

2 1—Qm0 . 1_Qm0
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inverting which we obtain,

Q. 1/3

Thus the scale factor is a monotonically increasing function of the cosmic time. Since, a =0
for t = 0, this universe begins in a Big Bang. For early times, ¢ < Ho_l,

3
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which is indeed a matter dominated universe. As Hyt > 1 the universe gets vacuum energy
dominated, the scale factor begins to grow exponentially,

Q. 1/3
a(t) =~ (1_9’00> exp (s/l — Q0 Ho t) .

Thus the universe again ends in a Big Chill.

Exercise: Age of the Universe
Compute the age of the universe, using the observed values of using the observed values of €, o
and Hy.

Excercise: Matter-Vacuum energy equality

Compute the time, ¢,,—p when the energy density in matter and vacuum energy were equal, p,,/pa
using the observed values of €2, o and Hy.

e Negative cosmological constant (£2,,0 > 1):

In this case, Qr0 = 1 — Q2,0 < 0 i.e. a negative cosmological constant. In this case we
have the solution,

a da
- | _
0 [M _ (Qm,o _ 1) a2}
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This integral can be solved exactly,
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or inverting,

o) 1/3 ‘ . /3
a(t) = <Qm;nﬂ1> sin®/? <2H0 Qo —1 ) . (20)
In addition to the big bang singularity at ¢t = 0, we note that at a later time,
27
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a — 0, i.e. the universe hits a big crunch singularity at time, f.ynen. Thus, a negative
cosmological constant acts as an attractive/ implosive force which causes the universe to
contract and ultimately collapse to a crunch singularity. The maximum scale factor of this

universe is,
1/3
A ( Qim0 ) /
maxr — - 1 .
Qmo—1

Exercise: Which universe is more short lived i.e. which one crunches faster - (a)
the matter and positive curvature universe (£ > 1), or (b) the matter and negative
vacuum energy universe ({),,0 > 1). For each case assume a nominal value for matter
(dust) density parameter Q5 = Q,, 0 = 1.1.

5 Matter and Radiation Universe

Finally let’s consider the early stages of the expansion history of the universe when matter and
radiation were the ones with high energy density. Setting the curvature and vacuum energy in such
an universe to zero, the cosmic time as a function of the scale factor is given by,
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For early times, i.e. well before radiation-matter equality aj:w < 1,

a = (QMHO t>1/2,

which is characteristic of a radiation-dominated epoch, as one would expect. For late times, Hot > 1
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which indeed as expected is the characteristic matter-dominated time dependence.
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