Unit 2

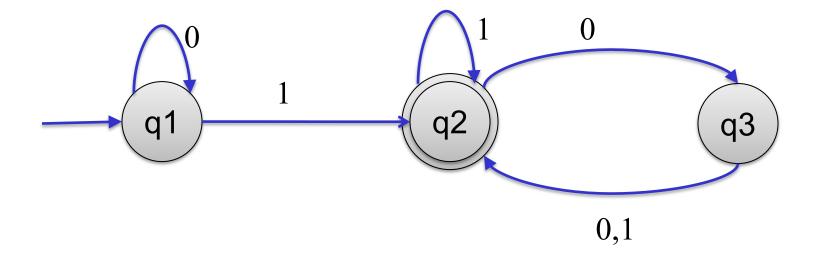
Finite Automata Regular Languages

Reading: Sipser, chapter 1

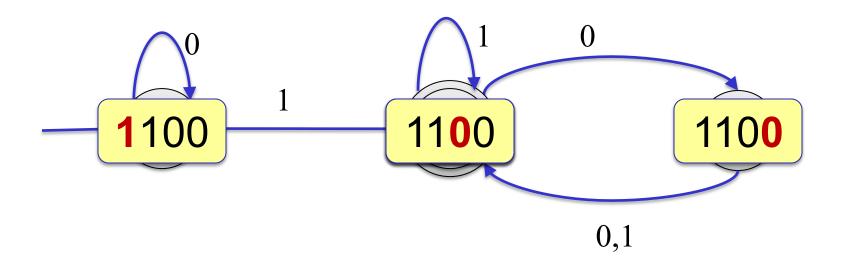
Please Welcome

our first computation model:

Finite Automata



1100



The machine accepts a string if the process ends in a double circled state

Finite Automata (FA)

- Our first formal model of computation.
- Consists of states (nodes) and moves (edges).
- The transition between states is according to an input word. Each symbol dictates one move.
- Some states are 'good' (accepting states) and some are 'bad' (rejecting states).
- A word is accepted by the Automaton if the transitions it dictates end up in an accepting state.

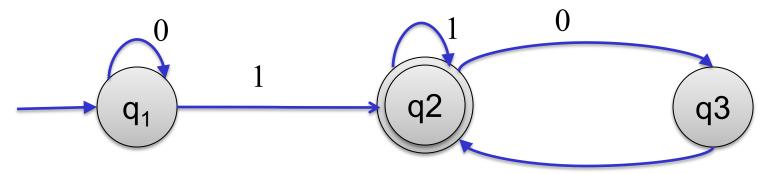
Formal Definition

A *Finite Automaton* (FA) is a 5-tuple (Q, Σ , δ , q_s, F):

- Q a finite set called the states.
- Σ a finite set called the alphabet.
- $\delta: Q \times \Sigma \rightarrow Q$ is the *transition function* $\delta(q_i, \sigma_i) = q_k$
- q_s∈Q is the starting state.
- F⊆Q is the set of accepting states.

FA is deterministic (and complete) if for every $(q_i, \sigma_j) \in Q \times \Sigma$, $\delta(q_i, \sigma_j)$ is uniquely defined.

Example:



• $M=(Q, \Sigma, \delta, q_s, F)$ where

$$- Q=\{q_1, q_2, q_3\}$$

$$-\Sigma = \{0, 1\}$$

- $-q_s=q_1$ is the starting state
- $F = \{q_2\}$
- $-\delta$ is defined in the following table:

	0	1
q_1	q_1	q_2
q_2	q_3	q_2
q_3	q_2	q_2

Sometimes δ is defined as a set of 3-tupples where $(q_i, \sigma, q_j) \in \delta$ means $\delta(q_i, \sigma) = q_j$

State Diagram

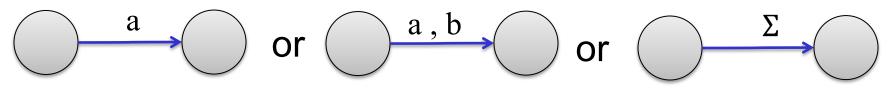
דיאגרמת מצבים

- A graphical representation of a finite automaton FA is also called a state diagram.
- Given a formal definition of the FA one can draw its state diagram.
- Given a state diagram one can write a formal definition of the FA.

State Diagram

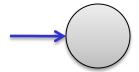
•A circle represents a state of the automaton.

•The *transition function* is represented by directed and labeled edges between states.



•Accepting states have a double circle.

•The starting state has an incoming arrow.



How does an Automaton work?

- Reads one symbol of the input word (i.e. one letter) in each time slot (left to right).
- In each time slot, it moves to a new state
 according to the current state and the symbol it
 reads (defined by the transition function).
- The automaton stops after the last move dictated by the last symbol in the input.
- If the state in which it stoped is accepting the automaton *accepts* the input word.

Formal Definition of Computation

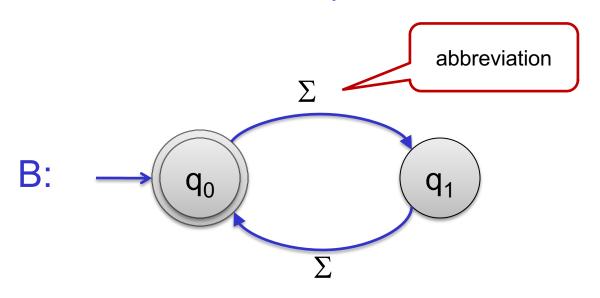
A finite automaton $M = (Q, \Sigma, \delta, q_s, F)$ accepts a string/word $\mathbf{w} = \sigma_1 ... \sigma_n$, $\sigma_i \in \Sigma$ if and only if there is a sequence $r_0 ... r_n$ of states $r_i \in Q$, such that:

- 1) $r_0 = q_s$
- 2) $\delta(r_i, \sigma_{i+1}) = r_{i+1}$ for all i = 0, ..., n-1
- 3) $r_n \in F$

The Language of an Automaton

- The language of an automaton M is denoted L(M)
- *L(M)* consists of *all and only words* that *M* accepts, i.e. when reading them it stops in an accepting state.

Recognizing the Language of an Automaton

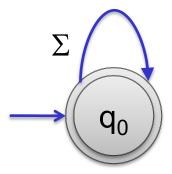


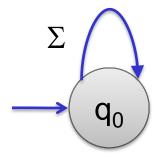
The language of B:

$$L(B) = \{ w \in \Sigma^* \mid |w| \text{ is even} \}$$

More Examples

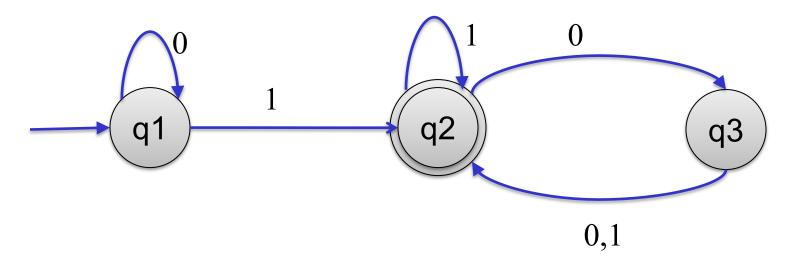
•
$$L=\sum^*$$





Previous Example

M:



The language of *M*:

 $L(M) = \{w \in \{0,1\}^* \mid w \text{ contains at least one 1} \}$ and even number of 0 follows the last 1}

Designing an Automaton

Construct an automaton B accepting the following language:

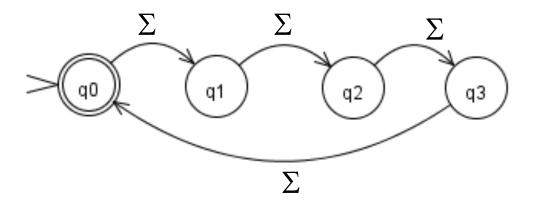
L(B)=
$$\{w \in \{a, b, c\}^* \mid |w| \text{ is odd}\}$$

B: $\begin{array}{c} a,b,c \\ \hline \\ a,b,c \end{array}$

Another Example

Construct an automaton accepting the following language:

$$L = \{ w \in \{0,1\}^* \mid |w| \bmod 4 = 0 \}$$

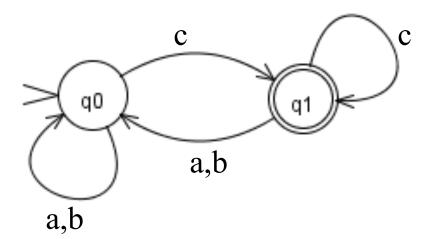


Another Example

Construct an automaton C accepting the following language:

$$L(C) = \{ w \mid w = uc, u \in \{a, b, c\}^* \}$$

C:



Exercise

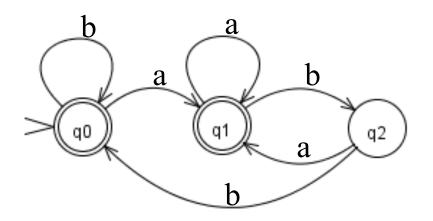
Construct an automaton accepting the language

L=
$$\{w \in \{0,1\}^* \mid |w| = 1 \text{ or } |w| \ge 3\}$$

Answer: in class

From state diagram to a formal description

 Consider the finite-state automaton A defined by the state diagram shown below:



$$A=(Q_A,\Sigma_A,\delta_A,q_0,F_A)$$
 where $Q_A=\{q_0,q_1,q_2\}, \Sigma_A=\{a,b\},$ δ_A- see table $F_A=\{q_0,q_1\},$ What is $L(A)$? What is $\sim L(A)$

δ_{A}	a	Ь
q 0	q_1	q_0
q_1	q_1	q ₂
q_2	q_1	q 0

From formal description to a state diagram

• Draw a state diagram according to B=(Q, Σ , δ , q₀, F).

$$Q = \{q_0, q_1, q_2, q_3\},$$

$$\Sigma = \{0, 1\},$$

$$q_0 \text{ initial state},$$

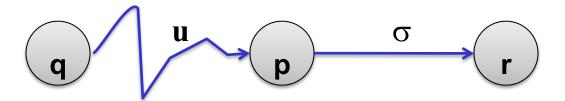
$$F = \{q_1\}.$$

δ	0	1
q_0	q_1	q ₃
q_1	q_1	q_2
q_2	q_1	q_2
q_3	q_3	q_3

Answer: In class

Extended transition function

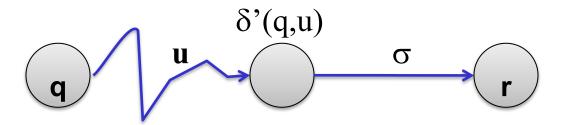
- Let $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ be a transition function
- We define an extended transition function $\delta': \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$
- The extended transition function δ ' defines the movement of an automaton on words.
- Let $w = u\sigma$ (w,u-words, σ -symbol)
- $\delta'(q,w) = \delta'(q,u\sigma) = \delta (\delta'(q,u), \sigma) = \delta (p, \sigma) = r$



Extended transition function

Formal definition $\delta': Q \times \Sigma^* \rightarrow Q$

- $\delta'(q,\epsilon)=q$, for all $q \in Q$,
- $\delta'(q,u\sigma) = \delta(\delta'(q,u),\sigma)$



The Language of an Automaton

 Informally: L(A) is a set of the words and only the words that A accepts.

Formally:

Let
$$A = (Q, \Sigma, \delta, q_0, F)$$
,
 $L(A) = \{w \in \Sigma^* \mid \delta'(q_0, w) \in F\}$

We say that A recognizes L(A)

Regular Languages

A language is called a *regular language* iff some finite automaton recognizes it.

FA Questions

- Given a language is it regular?
- In general, what kind of languages can be recognized by FA? (What are the regular languages?)
- What kind of languages a FA cannot recognize?

Exercises

Give DFA state diagrams for the following languages over $\Sigma = \{0,1\}$:

- 1. $\{ w \in \Sigma^* \mid w \text{ contains substring } 110 \}$
- 2. $\{w \in \Sigma^* \mid w \text{ does not contain substring 110}\}$
- 3. $\{w \in \Sigma^* \mid w \text{ contains } 00 \text{ but doesn't contain } 11\}$
- 4. $\{w \in \{0,1,2\}^* \mid w \text{ is a number is basis 3, whose value is divisible by 2}\}$

The language of an automaton

In-class exercise:

1. Describe formally and graphically an automaton, A, for the language

L={
$$w \in \{0,1\}^* \mid \#_1(w) \text{ is even}\}$$

2. Prove that L(A)=L.