Unit 4

Regular Expressions

Reading: Sipser, chapter 1



Overview

* Regular expressions (RE)

» Equivalence of RE and RL



Regular Expressions

Regular languages (RL) are often described
by means of algebraic expressions called
regular expressions (RE).

In arithmetic we use the +, * operations to
construct expressions: (2+3)*5

The value of the arithmetic expression is the
number 25.

The value of a regular expression is a regular
language.



Regular operations

* In RE we use reqgular operations to construct
expressions describing regular languages:

[(0+1)*oo ]

where :

» r+smeansr OR's
» * means Kleene star of r
» s (or rs) means concatenation of r and s



Formal definition

* A set of regular expressions over an alphabet
2. IS defined inductively as follows:

Basis:

e, 4, and o (for all ceX) are regular
expressions.

Induction:

If r and s are RE then the following expressions
are also RE:
- (N
— I+S
— roS

— r* 5



Examples over X={a,b}

g, a, atb, b*, (a+tb)b, ab*, (ab)*, a*+b*

« To avoid using many parentheses, the
operations have the following priority
hierarchy:

1. * - highest (do it first)
2. °
3. + - lowest (do it last)
« Example: b + ab* =(b+(a-(b*))
« Common notations: res=rs, r* =rr* and
Y= (0y+0y+ ).
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Regular expressions and
regular languages

We associate each regular expression r with a
regular language L(r) as follows:

* L(9D)=4S,

* L(e)={el,

* L(o)={c} for each ceZ,
* L(r+s)=L(r)uL(s),

* L(res)=L(r)-L(s),

* L(r*)=(L(r)*.




Examples over ¥={0,1}

In Class: Describe each language as
a regular expression.

L, ={w
L, ={w
L, ={w
L, ={w
L. ={w

Le={w

w has a single 1}

w has at least one 1}

w contains the string 110}
|lw| mod 2 =0}

w starts with 1}

w ends with 00}



Examples over £={0,1}, cont’

L7 ={w
L8 ={w
L9 ={w

w starts with 0 and ends with 10}
w contains the string 010 or the string 101 }

w starts and ends with the same letter }

L10 = {0,101}
L11 = {w | w does not contain 11 as a substring}
L12 = {w | #1(w) IS even}

L13={w | w does not contain 101}



Properties of regular expressions 1

Useful properties of regular expressions:
* I+S=S+r

¢ r+Q=L+r=r

o r+r=r

* 1J=Dr=C

« rr=rt

* re=er=r
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Properties of regular expressions 2

r(s+t)=rs+rt
r+(s+t)=(r+s)+t
r(st)=(rs)t

r*— (r*)* r*r* r*+r

r*+ r+: r*
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Equivalence of
regular expressions

« To prove that two regular expressions r and s
are equivalent we need to show that

L[rlcL[s] and L[s]cL][r].

« To show that two regular expressions are not
equivalent we have to find a word that
belongs to one expression and does not
belong to the other.
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Example

Let r=e+(0+1)"1
Let s=(0"1)"
Are r and s equivalent?

Answer: Yes. We will prove
L[s] < L[r] and L[r] < L[s]
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L[r]=L[s]
=g+(0+1)'1 s=(0"1)"

Let wel[s] =(0*1)*.
W=¢g O W=X,X,..X, , N>0 such that x.e L[0*1]
If w=¢ then we L[r].

If w=x,X,..x, then we can represent
w=w’1=x,X,..X, ;01 with k > 0.

However, w'= x,X,..X_,0%eL[(0+1)*],
implying w'le L[(O+1)*]1cL]r].
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o

et we

fw=et

f w=e t

L[rlcL[s]
(0+1)1 s=(0"1)

_[r]=e+(0+1)*1.
nen wel[s] (by definition of *).

nen w can be represented as w=w’'l1

where w'eL[(0+1)*]. Assume that w’ contains k
Instances of the letter 1. This means that w’ can
be written as w'= x,1x,1.. x,1x,,, where x.c0*

But then w=w’1=
=(x,1)(X,1)...(X,,,1)=(0*1)(0*1)...(0*1)

So wel[(0*1)*]. ;



Another example

Are r and s equivalent?
r=(0+1)*1+0*
s=(1+0)(0*1)*

Answer: No.
 Consider the word w = «.
« wel[r]=(0+1)*1+0*, because weO0*.

 Butwegl[s] =(1+0)(0*1)*, as all words in L[s]
have at least one letter.
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Equivalence of RE with FA

* Regular expressions and finite automata are
equivalent in terms of the languages they
describe.

4 )
Theorem:

A language is regular iff some regular
expression describes it.

- J

This theorem has two directions. We prove
each direction separately.
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Equivalences so far...

Regular
Languages

Regular
Expressions
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Converting RE into FA

Claim: If a language is described by a reqgular
expression, then it is regular.

Proof idea:

Given a RE r, build an NFA by transforming r
INto a non-deterministic finite automaton A s.t.
L(A)=L(r).

19



Converting RE into RL

Regular | | Regular
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RE to FA Algorithm

« Given r we start the algorithm with a NFA A
having a start state, a single accepting state
and an edge labeled r :

-0

[ N
Note: We assume at a moment that edges can be
labeled with RE, not just letters.
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RE to FA Algorithm (cont.)

We transform this machine into an NFA A by
applying the following rules (in order) until all the
edges are labeled with either a letter ceX or &:

1. If an edge is labeled O, then delete this edge.

@i@
@O W :




RE to FA Algorithm (cont.)

2. Transform any diagram of the type

—

Into the diagram

S
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RE to FA Algorithm (cont.)

3.Transform any diagram of the type

=

Into the diagram

—0O0—C
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RE to FA Algorithm (cont.)

4. Transform any diagram of the type

U

Into the diagram

0@
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Example:

Construct a NFA for the regular expression
b*+ ab.

Solution: We start by drawing the diagram:

b*+ab
()
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Example (cont.)

Next we apply rule 2 for b*+ab:

b*

ab
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Example (cont.)

Next we apply rule 3 for ab:
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Example (cont.)

Next we apply rule 4 for b*:
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The final NFA

Example 2: Draw an NFA for (ab+a)*
Example 3: Draw an NFA for (0+1)*101 (0O+1)*
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Converting FA into RE

Claim: If a language is reqgular, then it can be
described by a regular expression.

Proof idea:

Transform some DFA M into a regular
expression r s.t. L(r)=L(M).

31



Converting RL into RE

Regular | | Regular
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Converting FA into RE

* The algorithm will perform a sequence of
transformations that deform the DFA into
new machines with edges labeled with
regular expressions

* |t stops when the machine has:
1. two states: Start, Finish

2. one edge with a regular expression on it.
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Generalized NFA

 Before we start we first convert the DFA Iinto a
Generalized NFA (GNFA):

— GNFA might have RE as labels.

— GNFA has a single accept state.

— The start state has only arrows going out.

— The accept state has only arrows coming in.

— Except for the start and accept state, one arrow goes
from every state to every other state (including itself), and
In each direction.

OO
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Converting DFA into GNFA

The input is a DFA N=(Q, X, 5, q,, F).
Perform the following steps:

1. Create a new start state s and draw a new edge
labeled with € from s to the g,. Add 6(s,¢)=q, .

4 N

@
@f

o J .




Converting DFA into GNFA

The input is a DFA N=(Q, X, 5, q,, F).
Perform the following steps:

1. Create a new start state s and draw a new edge
labeled with € from s to the g,. Add 6(s,¢)=q, .

4 N

NIPG)
@ .

o J 5




Converting DFA info GNFA (cont.)

2. Create a new single accepting state f and
draw new edges labeled ¢ from all the original
accepting states to f.

Formally: For each geF, add 6(g,e)=f and
update F = {f}.

.o (@)
ofs @
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Converting DFA info GNFA (cont.)

2. Create a new single accepting state f and
draw new edges labeled ¢ from all the original

accepting states to f.

Formally: For each geF, add 6(g,e)=f and

update F = {f}.

e

ofe ®
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Converting DFA into GNFA (cont.)

3. For each pair of states | and | that have more
than one edge between them (in the same
direction), replace all the edges by a single
edge labeled with the RE formed by the sum of
the labels of these edges.

4. If there is no edge <i,j> then label(i,))=9
(including edges <j,j>)

DT
) =0 .




Example: DFA to GNFA
a,b

A
% j——{(4)

b

Gy
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Example: DFA to GNFA (cont.)

e d e
o —— 8~

b

G
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Example: DFA to GNFA (cont.)
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Converting GNFA into RE

Let old(i,]) denote the label on edge <i,j> of
the current GNFA.

Construct a sequence of new GNFAs by
eliminating one state at a time (= s,f) until
the only two states remaining are s and f.

When a state is eliminated, a new
(equivalent) machine is constructed.

t

'he state elimination order Is arbitrary.

"he label on <s,f> in the final machine is
ne required RE.
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Converting GNFA into RE (cont.)

Eliminating state k

* For each pair of states (i,])) where 1,j=k, the
label of (1,)) will be updated as follows:

[new(i, ) = old(i, ) + old(i, k) old(k, k)* old(k, /) }




Converting GNFA into RE (cont.)

Note, that only arrows
between states (i,j) i,j
+ k that are connected
(with no &) through the
deleted state (k) should
be updated.
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Converting GNFA into RE (cont.)

 The states of the new machine are those of
the current machine with state k eliminated.

* The edges of the new machine are those
edges (i,)) for which new(i,j) has been
calculated.

« The algorithm terminates when s and f are the
only two remaining states. The RE new(s,f)
represents the language of the original
automaton.
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Example: GNFA to RE




Example: GNFA to RE

Eliminating state q,

* No paths pass through g,. There are no states
that are connected through g,. So no need to
change anything after deletion of g..
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Example: GNFA to RE

Eliminating state q,

* No paths pass through g,. There are no states
that are connected through g,. So no need to
change anything after deletion of g..
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Example: GNFA to RE

Eliminating state q,
* The only path through q, IS s — ;.

* We add an edge that is labeled by regular
expression associated with the deleted edges.

new(s,q,)=old(s,q,)+old(s,q,)old(d,,q,) 0ld(dy.0,)=
=Hteda=a a+h

@,
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Example: GNFA to RE

Eliminating state q,
* The only path through q, IS s — ;.

* We add an edge that is labeled by regular
expression associated with the deleted edges.

new(s,q,)=old(s,q,)+old(s,q,)old(d,,q,) 0ld(dy.0,)=
=Hteda=a a+h

-
-© OO
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Example: GNFA to RE

Eliminating state q,

* The only path through q,i1ss — T.
new(s,f)=old(s,f)+old(s,q,)old(q,,q9,) old(q,,f)=

=¢Ha(at+b)*e = a(a+b)*
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Example: GNFA to RE

Eliminating state q,

* The only path through q,i1ss — T.
new(s,f)=old(s,f)+old(s,q,)old(q,,q9,) old(q,,f)=

=¢Ha(at+b)*e = a(a+b)*

@ a(atb)”
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Example IT

What is the regular expression of L(A)?

d

b
b=

Solution: In class

Dz
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Example ITI

What is the regular expression of L(A)?

Solution: In class
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End of Unit 4
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