Unit 4

Regular Expressions

Reading: Sipser, chapter 1

Overview

* Regular expressions (RE)

» Equivalence of RE and RL

Regular Expressions

Regular languages (RL) are often described
by means of algebraic expressions called
regular expressions (RE).

In arithmetic we use the +, * operations to
construct expressions: (2+3)*5

The value of the arithmetic expression is the
number 25.

The value of a regular expression is a regular
language.

Regular operations

* In RE we use reqgular operations to construct
expressions describing regular languages:

[(0+1)*oo]

where :

» r+smeansr OR's
» * means Kleene star of r
» s (or rs) means concatenation of r and s

Formal definition

* A set of regular expressions over an alphabet
2. IS defined inductively as follows:

Basis:

e, 4, and o (for all ceX) are regular
expressions.

Induction:

If r and s are RE then the following expressions
are also RE:
- (N
— I+S
— roS

— r* 5

Examples over X={a,b}

g, a, atb, b*, (a+tb)b, ab*, (ab)*, a*+b*

« To avoid using many parentheses, the
operations have the following priority
hierarchy:

1. * - highest (do it first)
2. °
3. + - lowest (do it last)
« Example: b + ab* =(b+(a-(b*))
« Common notations: res=rs, r* =rr* and
Y= (0y+0y+).

6

Regular expressions and
regular languages

We associate each regular expression r with a
regular language L(r) as follows:

* L(9D)=4S,

* L(e)={el,

* L(o)={c} for each ceZ,
* L(r+s)=L(r)uL(s),

* L(res)=L(r)-L(s),

* L(r*)=(L(r)*.

Examples over ¥={0,1}

In Class: Describe each language as
a regular expression.

L, ={w
L, ={w
L, ={w
L, ={w
L. ={w

Le={w

w has a single 1}

w has at least one 1}

w contains the string 110}
|lw| mod 2 =0}

w starts with 1}

w ends with 00}

Examples over £={0,1}, cont’

L7 ={w
L8 ={w
L9 ={w

w starts with 0 and ends with 10}
w contains the string 010 or the string 101 }

w starts and ends with the same letter }

L10 = {0,101}
L11 = {w | w does not contain 11 as a substring}
L12 = {w | #1(w) IS even}

L13={w | w does not contain 101}

Properties of regular expressions 1

Useful properties of regular expressions:
* I+S=S+r

¢ r+Q=L+r=r

o r+r=r

* 1J=Dr=C

« rr=rt

* re=er=r

10

Properties of regular expressions 2

r(s+t)=rs+rt
r+(s+t)=(r+s)+t
r(st)=(rs)t

r*— (r*)* r*r* r*+r

r*+ r+: r*

11

Equivalence of
regular expressions

« To prove that two regular expressions r and s
are equivalent we need to show that

L[rlcL[s] and L[s]cL][r].

« To show that two regular expressions are not
equivalent we have to find a word that
belongs to one expression and does not
belong to the other.

12

Example

Let r=e+(0+1)"1
Let s=(0"1)"
Are r and s equivalent?

Answer: Yes. We will prove
L[s] < L[r] and L[r] < L[s]

13

L[r]=L[s]
=g+(0+1)'1 s=(0"1)"

Let wel[s] =(0*1)*.
W=¢g O W=X,X,..X, , N>0 such that x.e L[0*1]
If w=¢ then we L[r].

If w=x,X,..x, then we can represent
w=w’1=x,X,..X, ;01 with k > 0.

However, w'= x,X,..X_,0%eL[(0+1)*],
implying w'le L[(O+1)*]1cL]r].

14

o

et we

fw=et

f w=e t

L[rlcL[s]
(0+1)1 s=(0"1)

_[r]=e+(0+1)*1.
nen wel[s] (by definition of *).

nen w can be represented as w=w’'l1

where w'eL[(0+1)*]. Assume that w’ contains k
Instances of the letter 1. This means that w’ can
be written as w'= x,1x,1.. x,1x,,, where x.c0*

But then w=w’1=
=(x,1)(X,1)...(X,,,1)=(0*1)(0*1)...(0*1)

So wel[(0*1)*]. ;

Another example

Are r and s equivalent?
r=(0+1)*1+0*
s=(1+0)(0*1)*

Answer: No.
 Consider the word w = «.
« wel[r]=(0+1)*1+0*, because weO0*.

 Butwegl[s] =(1+0)(0*1)*, as all words in L[s]
have at least one letter.

16

Equivalence of RE with FA

* Regular expressions and finite automata are
equivalent in terms of the languages they
describe.

4)
Theorem:

A language is regular iff some regular
expression describes it.

- J

This theorem has two directions. We prove
each direction separately.

17

Equivalences so far...

Regular
Languages

Regular
Expressions

18

Converting RE into FA

Claim: If a language is described by a reqgular
expression, then it is regular.

Proof idea:

Given a RE r, build an NFA by transforming r
INto a non-deterministic finite automaton A s.t.
L(A)=L(r).

19

Converting RE into RL

Regular | | Regular

20

RE to FA Algorithm

« Given r we start the algorithm with a NFA A
having a start state, a single accepting state
and an edge labeled r :

-0

[N
Note: We assume at a moment that edges can be
labeled with RE, not just letters.

21

RE to FA Algorithm (cont.)

We transform this machine into an NFA A by
applying the following rules (in order) until all the
edges are labeled with either a letter ceX or &:

1. If an edge is labeled O, then delete this edge.

@i@
@O W :

RE to FA Algorithm (cont.)

2. Transform any diagram of the type

—

Into the diagram

S

23

RE to FA Algorithm (cont.)

3.Transform any diagram of the type

=

Into the diagram

—0O0—C

24

RE to FA Algorithm (cont.)

4. Transform any diagram of the type

U

Into the diagram

0@

25

Example:

Construct a NFA for the regular expression
b*+ ab.

Solution: We start by drawing the diagram:

b*+ab
()

26

Example (cont.)

Next we apply rule 2 for b*+ab:

b*

ab

27

Example (cont.)

Next we apply rule 3 for ab:

28

Example (cont.)

Next we apply rule 4 for b*:

29

The final NFA

Example 2: Draw an NFA for (ab+a)*
Example 3: Draw an NFA for (0+1)*101 (0O+1)*

30

Converting FA into RE

Claim: If a language is reqgular, then it can be
described by a regular expression.

Proof idea:

Transform some DFA M into a regular
expression r s.t. L(r)=L(M).

31

Converting RL into RE

Regular | | Regular

32

Converting FA into RE

* The algorithm will perform a sequence of
transformations that deform the DFA into
new machines with edges labeled with
regular expressions

* |t stops when the machine has:
1. two states: Start, Finish

2. one edge with a regular expression on it.

33

Generalized NFA

 Before we start we first convert the DFA Iinto a
Generalized NFA (GNFA):

— GNFA might have RE as labels.

— GNFA has a single accept state.

— The start state has only arrows going out.

— The accept state has only arrows coming in.

— Except for the start and accept state, one arrow goes
from every state to every other state (including itself), and
In each direction.

OO
34

Converting DFA into GNFA

The input is a DFA N=(Q, X, 5, q,, F).
Perform the following steps:

1. Create a new start state s and draw a new edge
labeled with € from s to the g,. Add 6(s,¢)=q, .

4 N

@
@f

o J .

Converting DFA into GNFA

The input is a DFA N=(Q, X, 5, q,, F).
Perform the following steps:

1. Create a new start state s and draw a new edge
labeled with € from s to the g,. Add 6(s,¢)=q, .

4 N

NIPG)
@ .

o J 5

Converting DFA info GNFA (cont.)

2. Create a new single accepting state f and
draw new edges labeled ¢ from all the original
accepting states to f.

Formally: For each geF, add 6(g,e)=f and
update F = {f}.

.o (@)
ofs @

37

Converting DFA info GNFA (cont.)

2. Create a new single accepting state f and
draw new edges labeled ¢ from all the original

accepting states to f.

Formally: For each geF, add 6(g,e)=f and

update F = {f}.

e

ofe ®

38

Converting DFA into GNFA (cont.)

3. For each pair of states | and | that have more
than one edge between them (in the same
direction), replace all the edges by a single
edge labeled with the RE formed by the sum of
the labels of these edges.

4. If there is no edge <i,j> then label(i,))=9
(including edges <j,j>)

DT
) =0 .

Example: DFA to GNFA
a,b

A
% j——{(4)

b

Gy

40

Example: DFA to GNFA (cont.)

e d e
o —— 8~

b

G

41

Example: DFA to GNFA (cont.)

42

Converting GNFA into RE

Let old(i,]) denote the label on edge <i,j> of
the current GNFA.

Construct a sequence of new GNFAs by
eliminating one state at a time (= s,f) until
the only two states remaining are s and f.

When a state is eliminated, a new
(equivalent) machine is constructed.

t

'he state elimination order Is arbitrary.

"he label on <s,f> in the final machine is
ne required RE.

43

Converting GNFA into RE (cont.)

Eliminating state k

* For each pair of states (i,])) where 1,j=k, the
label of (1,)) will be updated as follows:

[new(i,) = old(i,) + old(i, k) old(k, k)* old(k, /) }

Converting GNFA into RE (cont.)

Note, that only arrows
between states (i,j) i,j
+ k that are connected
(with no &) through the
deleted state (k) should
be updated.

45

Converting GNFA into RE (cont.)

 The states of the new machine are those of
the current machine with state k eliminated.

* The edges of the new machine are those
edges (i,)) for which new(i,j) has been
calculated.

« The algorithm terminates when s and f are the
only two remaining states. The RE new(s,f)
represents the language of the original
automaton.

46

Example: GNFA to RE

Example: GNFA to RE

Eliminating state q,

* No paths pass through g,. There are no states
that are connected through g,. So no need to
change anything after deletion of g..

48

Example: GNFA to RE

Eliminating state q,

* No paths pass through g,. There are no states
that are connected through g,. So no need to
change anything after deletion of g..

49

Example: GNFA to RE

Eliminating state q,
* The only path through q, IS s — ;.

* We add an edge that is labeled by regular
expression associated with the deleted edges.

new(s,q,)=old(s,q,)+old(s,q,)old(d,,q,) 0ld(dy.0,)=
=Hteda=a a+h

@,

50

Example: GNFA to RE

Eliminating state q,
* The only path through q, IS s — ;.

* We add an edge that is labeled by regular
expression associated with the deleted edges.

new(s,q,)=old(s,q,)+old(s,q,)old(d,,q,) 0ld(dy.0,)=
=Hteda=a a+h

-
-© OO

51

Example: GNFA to RE

Eliminating state q,

* The only path through q,i1ss — T.
new(s,f)=old(s,f)+old(s,q,)old(q,,q9,) old(q,,f)=

=¢Ha(at+b)*e = a(a+b)*

52

Example: GNFA to RE

Eliminating state q,

* The only path through q,i1ss — T.
new(s,f)=old(s,f)+old(s,q,)old(q,,q9,) old(q,,f)=

=¢Ha(at+b)*e = a(a+b)*

@ a(atb)”

53

Example IT

What is the regular expression of L(A)?

d

b
b=

Solution: In class

Dz

54

Example ITI

What is the regular expression of L(A)?

Solution: In class

55

End of Unit 4

56

