
1

Unit 4

Regular Expressions

Reading: Sipser, chapter 1

2

Overview

• Regular expressions (RE)

• Equivalence of RE and RL

3

Regular Expressions

• Regular languages (RL) are often described

by means of algebraic expressions called

regular expressions (RE).

• In arithmetic we use the +, * operations to

construct expressions: (2+3)*5

• The value of the arithmetic expression is the

number 25.

• The value of a regular expression is a regular

language.

4

Regular operations

• In RE we use regular operations to construct

expressions describing regular languages:

(0 + 1)* ◦ 0

where :

 r+s means r OR s

 r* means Kleene star of r

 r◦s (or rs) means concatenation of r and s

5

Formal definition
• A set of regular expressions over an alphabet
 is defined inductively as follows:

Basis:

, , and (for all) are regular
expressions.

Induction:

If r and s are RE then the following expressions
are also RE:
– (r)
– r+s
– r◦s
– r*

6

Examples over ={a,b}

, a, a+b, b*, (a+b)b, ab*, (ab)* , a*+b*

• To avoid using many parentheses, the

operations have the following priority

hierarchy:

1. * - highest (do it first)

2. ◦

3. + - lowest (do it last)

• Example: b + ab* =(b+(a◦(b*))

• Common notations: 𝑟 ∘ 𝑠 = 𝑟𝑠, 𝑟+ = 𝑟𝑟∗ and

Σ = 𝜎1 + 𝜎2 +⋯ .

7

Regular expressions and
regular languages

We associate each regular expression r with a

regular language L(r) as follows:

• L()=,

• L()={},

• L()={} for each ,

• L(r+s)=L(r)L(s),

• L(r◦s)=L(r)◦L(s),

• L(r*)=(L(r))*.

8

Examples over ={0,1}

L1 = { w | w has a single 1}

L2 = { w | w has at least one 1}

L3 = { w | w contains the string 110}

L4 = { w | |w| mod 2 =0}

L5 = { w | w starts with 1}

L6 = { w | w ends with 00}

In Class: Describe each language as

a regular expression.

9

Examples over ={0,1}, cont’

L7 = { w | w starts with 0 and ends with 10}

L8 = { w | w contains the string 010 or the string 101 }

L9 = { w | w starts and ends with the same letter }

L10 = {0,101}

L11 = {w | w does not contain 11 as a substring}

L12 = {w | #1(w) is even}

L13={w | w does not contain 101}

10

Properties of regular expressions 1

Useful properties of regular expressions:

• r+s=s+r

• r+=+r=r

• r+r=r

• r=r=

• rr*=r+

• r=r=r

11

• r(s+t)=rs+rt

• r+(s+t)=(r+s)+t

• r(st)=(rs)t

• r*=(r*)*=r*r*=r*+r

• r*+r+=r*

Properties of regular expressions 2

12

Equivalence of
regular expressions

• To prove that two regular expressions r and s
are equivalent we need to show that

L[r]L[s] and L[s]L[r].

• To show that two regular expressions are not
equivalent we have to find a word that
belongs to one expression and does not
belong to the other.

13

Example

Let r=+(0+1)*1

Let s=(0*1)*

Are r and s equivalent?

Answer: Yes. We will prove

L[s] L[r] and L[r] L[s]

14

L[r]L[s]

r=+(0+1)*1 s=(0*1)*

• Let wL[s] =(0*1)*.

• w= or w=x1x2..xn , n>0 such that xiL[0*1]

• If w= then wL[r].

• If w=x1x2..xn then we can represent

w=w’1=x1x2..xn-10
k1 with k 0.

However, w’= x1x2..xn-10
kL[(0+1)*],

implying w’1 L[(0+1)*]1L[r].

15

L[r]L[s]

r=+(0+1)*1 s=(0*1)*

• Let wL[r]=+(0+1)*1.

• If w= then wL[s] (by definition of *).

• If w then w can be represented as w=w’1

where w’L[(0+1)*]. Assume that w’ contains k

instances of the letter 1. This means that w’ can

be written as w’= x11x21.. xk1xk+1 where xi0*

But then w=w’1=

=(x11)(x21)…(xk+11)=(0*1)(0*1)...(0*1)

So wL[(0*1)*].

16

Another example

Are r and s equivalent?

r=(0+1)*1+0*

s=(1+0)(0*1)*

Answer: No.

• Consider the word w = .

• wL[r]=(0+1)*1+0*, because w0*.

• But wL[s] =(1+0)(0*1)*, as all words in L[s]

have at least one letter.

17

Equivalence of RE with FA

• Regular expressions and finite automata are
equivalent in terms of the languages they
describe.

Theorem:

A language is regular iff some regular
expression describes it.

This theorem has two directions. We prove
each direction separately.

Equivalences so far…

18

Regular
Languages DFA

Regular
Expressions NFA

19

Converting RE into FA

Claim: If a language is described by a regular
expression, then it is regular.

Proof idea:

Given a RE r, build an NFA by transforming r
into a non-deterministic finite automaton A s.t.
L(A)=L(r).

Converting RE into RL

20

Regular
Language

Regular
Expression

NFA

21

RE to FA Algorithm

• Given r we start the algorithm with a NFA A

having a start state, a single accepting state

and an edge labeled r :

q p
r

Note: We assume at a moment that edges can be

labeled with RE, not just letters.

22

RE to FA Algorithm (cont.)

We transform this machine into an NFA A by

applying the following rules (in order) until all the

edges are labeled with either a letter or :

1. If an edge is labeled , then delete this edge.

i j

i j

23

2. Transform any diagram of the type

into the diagram

RE to FA Algorithm (cont.)

i j
r+s

i j

r

s

24

3.Transform any diagram of the type

into the diagram

RE to FA Algorithm (cont.)

i j
rs

i
r

j
s

25

4.Transform any diagram of the type

into the diagram

RE to FA Algorithm (cont.)

i j
r*

i

r

j

26

Example:

Construct a NFA for the regular expression

b*+ ab.

Solution: We start by drawing the diagram:

s f
b*+ab

27

Example (cont.)

Next we apply rule 2 for b*+ab:

s f

b*

ab

b*+ab

28

Example (cont.)

Next we apply rule 3 for ab:

s f

b*

a b

ab

29

Example (cont.)

Next we apply rule 4 for b*:

s f

b*

a b

b

30

The final NFA

Example 2: Draw an NFA for (ab+a)*

Example 3: Draw an NFA for (0+1)*101 (0+1)*

s f

a b

b

31

Converting FA into RE

Claim: If a language is regular, then it can be

described by a regular expression.

Proof idea:

Transform some DFA M into a regular

expression r s.t. L(r)=L(M).

Converting RL into RE

32

Regular
Expression

Regular
Language

DFA

33

Converting FA into RE

• The algorithm will perform a sequence of

transformations that deform the DFA into

new machines with edges labeled with

regular expressions

• It stops when the machine has:

1. two states: Start, Finish

2. one edge with a regular expression on it.

34

Generalized NFA
• Before we start we first convert the DFA into a

Generalized NFA (GNFA):

– GNFA might have RE as labels.

– GNFA has a single accept state.

– The start state has only arrows going out.

– The accept state has only arrows coming in.

– Except for the start and accept state, one arrow goes

from every state to every other state (including itself), and

in each direction.

s f

r

35

Converting DFA into GNFA

The input is a DFA N=(Q, , , q0, F).

Perform the following steps:

1. Create a new start state s and draw a new edge
labeled with from s to the q0. Add (s,)= q0 .

q0 f

36

Converting DFA into GNFA

The input is a DFA N=(Q, , , q0, F).

Perform the following steps:

1. Create a new start state s and draw a new edge
labeled with from s to the q0. Add (s,)= q0 .

q0 fs

37

2. Create a new single accepting state f and

draw new edges labeled from all the original

accepting states to f.

Formally: For each qF, add (q,)= f and

update 𝐹 = {𝑓}.

Converting DFA into GNFA (cont.)

q0 fs

38

2. Create a new single accepting state f and

draw new edges labeled from all the original

accepting states to f.

Formally: For each qF, add (q,)= f and

update 𝐹 = {𝑓}.

q0s f

Converting DFA into GNFA (cont.)

39

3. For each pair of states i and j that have more

than one edge between them (in the same

direction), replace all the edges by a single

edge labeled with the RE formed by the sum of

the labels of these edges.

4. If there is no edge <i,j> then label(i,j)=

(including edges <j,j>)

i j
r+s

i j
r

s

Converting DFA into GNFA (cont.)

i j

i j

Example: DFA to GNFA

40

q0

a
q1

b

q2

a,b

a,b

41

q0

a
q1

b

q2

a,b

a,b

Example: DFA to GNFA (cont.)

s

f

42

q0

a
q1

b

q2

a+b

a+b

Example: DFA to GNFA (cont.)

s

f

43

• Let old(i,j) denote the label on edge <i,j> of
the current GNFA.

• Construct a sequence of new GNFAs by
eliminating one state at a time (s,f) until
the only two states remaining are s and f.

• When a state is eliminated, a new
(equivalent) machine is constructed.

• The state elimination order is arbitrary.

• The label on <s,f> in the final machine is
the required RE.

Converting GNFA into RE

44

Eliminating state k

• For each pair of states (i,j) where i,jk, the
label of (i,j) will be updated as follows:

Converting GNFA into RE (cont.)

𝑛𝑒𝑤 𝑖, 𝑗 = 𝑜𝑙𝑑 𝑖, 𝑗 + 𝑜𝑙𝑑 𝑖, 𝑘 𝑜𝑙𝑑 𝑘, 𝑘 ∗ 𝑜𝑙𝑑(𝑘, 𝑗)

i j

old(i,k) k old(k,j)

old(i,j)

old(k,k)

i j

𝑜𝑙𝑑 𝑖, 𝑗 + 𝑜𝑙𝑑 𝑖, 𝑘 𝑜𝑙𝑑 𝑘, 𝑘 ∗ 𝑜𝑙𝑑(𝑘, 𝑗)

45

Converting GNFA into RE (cont.)

k

Note, that only arrows

between states 𝑖, 𝑗 𝑖, 𝑗

≠ 𝑘 that are connected

(with no) through the

deleted state (k) should

be updated.

46

• The states of the new machine are those of
the current machine with state k eliminated.

• The edges of the new machine are those
edges (i,j) for which new(i,j) has been
calculated.

• The algorithm terminates when s and f are the
only two remaining states. The RE new(s,f)
represents the language of the original
automaton.

Converting GNFA into RE (cont.)

47

q0

a
q1

b

q2

a+b

a+b

Example: GNFA to RE

s

f

48

q0

a
q1

b

q2

a+b

a+b

s

f

Eliminating state q2

• No paths pass through q2. There are no states
that are connected through q2. So no need to
change anything after deletion of q2.

Example: GNFA to RE

49

q0

a
q1

a+b

s

f

Eliminating state q2

• No paths pass through q2. There are no states
that are connected through q2. So no need to
change anything after deletion of q2.

Example: GNFA to RE

50

q0

a
q1

a+b

s

f

Example: GNFA to RE

Eliminating state q0

• The only path through q0 is s q1.

• We add an edge that is labeled by regular
expression associated with the deleted edges.

new(s,q1)=old(s,q1)+old(s,q0)old(q0,q0)
*old(q0,q1)=

=+*a=a

51

a
q1

a+b

s f

Eliminating state q0

• The only path through q0 is s q1.

• We add an edge that is labeled by regular
expression associated with the deleted edges.

new(s,q1)=old(s,q1)+old(s,q0)old(q0,q0)
*old(q0,q1)=

=+*a=a

Example: GNFA to RE

52

a
q1

a+b

s f

Eliminating state q1

• The only path through q1 is s f.

new(s,f)=old(s,f)+old(s,q1)old(q1,q1)
*old(q1,f)=

=+a(a+b)* = a(a+b)*

Example: GNFA to RE

53

a(a+b)*

s f

Eliminating state q1

• The only path through q1 is s f.

new(s,f)=old(s,f)+old(s,q1)old(q1,q1)
*old(q1,f)=

=+a(a+b)* = a(a+b)*

Example: GNFA to RE

54

Example II

What is the regular expression of L(A)?

Solution: In class

q0

b
q1

a a,b

55

Example III

What is the regular expression of L(A)?

Solution: In class

q0 bq1

a

b

q2

a

ab

End of Unit 4

56

