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Unit 4

Regular Expressions

Reading: Sipser, chapter 1
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Overview

• Regular expressions (RE)

• Equivalence of RE and RL
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Regular Expressions

• Regular languages (RL) are often described

by means of algebraic expressions called

regular expressions (RE).

• In arithmetic we use the +, * operations to

construct expressions: (2+3)*5

• The value of the arithmetic expression is the

number 25.

• The value of a regular expression is a regular

language.
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Regular operations

• In RE we use regular operations to construct

expressions describing regular languages:

( 0 + 1 )* ◦ 0 

where :

 r+s means r OR s

 r* means Kleene star of r

 r◦s (or rs) means concatenation of r and s
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Formal definition
• A set of regular expressions over an alphabet
 is defined inductively as follows:

Basis:

, , and  (for all ) are regular 
expressions.

Induction:

If r and s are RE then the following expressions 
are also RE:
– (r) 
– r+s
– r◦s
– r*
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Examples over ={a,b}

, a, a+b, b*, (a+b)b, ab*, (ab)* , a*+b*

• To avoid using many parentheses, the 

operations have the following priority 

hierarchy:

1. * - highest (do it first)

2. ◦

3. + - lowest (do it last)

• Example: b + ab* =(b+(a◦(b*))

• Common notations: 𝑟 ∘ 𝑠 = 𝑟𝑠, 𝑟+ = 𝑟𝑟∗ and

Σ = 𝜎1 + 𝜎2 +⋯ .
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Regular expressions and 
regular languages

We associate each regular expression r with a 

regular language L(r) as follows:

• L()=,

• L()={},

• L()={} for each ,

• L(r+s)=L(r)L(s),

• L(r◦s)=L(r)◦L(s),

• L(r*)=(L(r))*.
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Examples over ={0,1} 

L1 = { w | w has a single 1}

L2 = { w | w has at least one 1}

L3 = { w | w contains the string 110}

L4 = { w | |w| mod 2 =0}

L5 = { w | w starts with 1}

L6 = { w | w ends with 00}

In Class: Describe each language as 

a regular expression.
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Examples over ={0,1}, cont’ 

L7 = { w | w starts with 0 and ends with 10}

L8 = { w | w contains the string 010 or the string 101 }

L9 = { w | w starts and ends with the same letter }

L10 = {0,101}

L11 = {w | w does not contain 11 as a substring}

L12 = {w | #1(w) is even}

L13={w | w does not contain 101}



10

Properties of regular expressions 1

Useful properties of regular expressions:

• r+s=s+r

• r+=+r=r

• r+r=r

• r=r=

• rr*=r+ 

• r=r=r
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• r(s+t)=rs+rt

• r+(s+t)=(r+s)+t 

• r(st)=(rs)t

• r*=(r*)*=r*r*=r*+r

• r*+r+=r*

Properties of regular expressions 2
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Equivalence of 
regular expressions

• To prove that two regular expressions r and s
are equivalent we need to show that

L[r]L[s] and  L[s]L[r].

• To show that two regular expressions are not 
equivalent we have to find a word that 
belongs to one expression and does not 
belong to the other.
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Example

Let r=+(0+1)*1

Let s=(0*1)*

Are r and s equivalent?

Answer: Yes. We will prove 

L[s]  L[r] and L[r]  L[s]
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L[r]L[s]

r=+(0+1)*1                           s=(0*1)*

• Let wL[s] =(0*1)*.

• w= or w=x1x2..xn , n>0 such that xiL[0*1]

• If w= then wL[r].

• If  w=x1x2..xn then we can represent 

w=w’1=x1x2..xn-10
k1 with k  0.

However, w’= x1x2..xn-10
kL[(0+1)*],

implying w’1 L[(0+1)*]1L[r].
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L[r]L[s]

r=+(0+1)*1                           s=(0*1)*

• Let wL[r]=+(0+1)*1. 

• If w= then wL[s] (by definition of *).

• If w then w can be represented as w=w’1  

where w’L[(0+1)*]. Assume that w’ contains k 

instances of the letter 1. This means that w’ can 

be written as w’= x11x21.. xk1xk+1 where xi0*

But then w=w’1= 

=(x11)(x21)…(xk+11)=(0*1)(0*1)...(0*1)

So wL[(0*1)*].
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Another example

Are r and s equivalent?

r=(0+1)*1+0*

s=(1+0)(0*1)*

Answer: No.

• Consider the word w = . 

• wL[r]=(0+1)*1+0*, because w0*.

• But wL[s] =(1+0)(0*1)*, as all words in L[s] 

have at least one letter.
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Equivalence of RE with FA

• Regular expressions and finite automata are 
equivalent in terms of the languages they 
describe.

Theorem:

A language is regular iff some regular 
expression describes it.

This theorem has two directions. We prove 
each direction separately.



Equivalences so far…
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Regular 
Languages  DFA

Regular 
Expressions  NFA


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Converting RE into FA

Claim: If a language is described by a regular 
expression, then it is regular.

Proof idea:

Given a RE r, build an NFA by transforming r
into a non-deterministic finite automaton A s.t.
L(A)=L(r).



Converting RE into RL 

20

Regular 
Language

Regular 
Expression

NFA
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RE to FA Algorithm

• Given r we start the algorithm with a NFA A

having a start state, a single accepting state 

and an edge labeled r :

q p
r

Note: We assume at a moment that edges can be 

labeled with RE, not just letters.
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RE to FA Algorithm (cont.)

We transform this machine into an NFA A by 

applying the following rules (in order) until all the 

edges are labeled with either a letter  or :

1. If an edge is labeled , then delete this edge.

i j


i j
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2. Transform any diagram of the type

into the diagram

RE to FA Algorithm (cont.)

i j
r+s

i j

r

s
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3.Transform any diagram of the type

into the diagram

RE to FA Algorithm (cont.)

i j
rs

i
r

j
s
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4.Transform any diagram of the type

into the diagram

RE to FA Algorithm (cont.)

i j
r*

i

r

j
 
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Example: 

Construct a NFA for the regular expression

b*+ ab.

Solution: We start by drawing the diagram:

s f
b*+ab
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Example (cont.) 

Next we apply rule 2 for b*+ab: 

s f

b*

ab

b*+ab
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Example (cont.) 

Next we apply rule 3 for ab:

s f

b*

a b

ab
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Example (cont.) 

Next we apply rule 4 for b*:

s f

b*

a b

 

b
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The final NFA

Example 2:  Draw an NFA for (ab+a)*

Example 3: Draw an NFA for  (0+1)*101 (0+1)*

s f

a b

 

b
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Converting FA into RE

Claim: If a language is regular, then it can be 

described by a regular expression.

Proof idea:

Transform some DFA M into a regular 

expression  r s.t. L(r)=L(M).



Converting RL into RE 
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Regular 
Expression

Regular 
Language

DFA
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Converting FA into RE

• The algorithm will perform a sequence of 

transformations that deform the DFA into 

new machines with edges labeled with 

regular expressions

• It stops when the machine has:

1. two states: Start, Finish

2. one edge with a regular expression on it.  
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Generalized NFA
• Before we start we first convert the DFA into a 

Generalized NFA (GNFA):

– GNFA might have RE as labels.

– GNFA has a single accept state.

– The start state has only arrows going out.

– The accept state has only arrows coming in.

– Except  for the start and accept state, one arrow goes 

from every state to every other state (including itself), and 

in each direction.

s f


r
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Converting DFA into GNFA

The input is a DFA  N=(Q, , , q0, F).

Perform the following steps:

1. Create a new start state s and draw a new edge 
labeled with  from s to the q0. Add (s,)= q0 .

q0 f
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Converting DFA into GNFA

The input is a DFA  N=(Q, , , q0, F).

Perform the following steps:

1. Create a new start state s and draw a new edge 
labeled with  from s to the q0. Add (s,)= q0 .

q0 fs

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2. Create a new single accepting state f and 

draw new edges labeled  from all the original 

accepting states to f. 

Formally: For each qF, add (q,)= f and 

update 𝐹 = {𝑓}.

Converting DFA into GNFA (cont.)

q0 fs

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2. Create a new single accepting state f and 

draw new edges labeled  from all the original 

accepting states to f. 

Formally: For each qF, add (q,)= f and 

update 𝐹 = {𝑓}.

q0s f






Converting DFA into GNFA (cont.)
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3. For each pair of states i and j that have more 

than one edge between them (in the same 

direction), replace all the edges by a single

edge labeled with the RE formed by the sum of 

the labels of these edges.

4. If there is no edge <i,j> then label(i,j)=

(including edges <j,j>)

i j
r+s

i j
r

s

Converting DFA into GNFA (cont.)

i j

i j






Example: DFA to GNFA
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q0

a
q1

b

q2

a,b

a,b
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q0

a
q1

b

q2

a,b

a,b

Example: DFA to GNFA (cont.)

s


f

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q0

a
q1

b

q2

a+b

a+b

Example: DFA to GNFA (cont.)

s


f

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• Let old(i,j) denote the label on edge <i,j> of 
the current GNFA. 

• Construct a sequence of new GNFAs by 
eliminating one state at a time ( s,f) until 
the only two states remaining are s and f.  

• When a state is eliminated, a new 
(equivalent) machine is constructed.

• The state elimination order is arbitrary. 

• The label on <s,f> in the final machine is 
the required RE.

Converting GNFA into RE
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Eliminating state k

• For each pair of states (i,j) where i,jk, the 
label of (i,j) will be updated as follows:

Converting GNFA into RE (cont.)

𝑛𝑒𝑤 𝑖, 𝑗 = 𝑜𝑙𝑑 𝑖, 𝑗 + 𝑜𝑙𝑑 𝑖, 𝑘 𝑜𝑙𝑑 𝑘, 𝑘 ∗ 𝑜𝑙𝑑(𝑘, 𝑗)

i j

old(i,k) k old(k,j)

old(i,j)

old(k,k)

i j

𝑜𝑙𝑑 𝑖, 𝑗 + 𝑜𝑙𝑑 𝑖, 𝑘 𝑜𝑙𝑑 𝑘, 𝑘 ∗ 𝑜𝑙𝑑(𝑘, 𝑗)
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Converting GNFA into RE (cont.)

k

Note, that only arrows 

between states 𝑖, 𝑗 𝑖, 𝑗

≠ 𝑘 that are connected 

(with no ) through the 

deleted state (k) should 

be updated.
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• The states of the new machine are those of 
the current machine with state k eliminated. 

• The edges of the new machine are those 
edges (i,j) for which new(i,j) has been 
calculated.

• The algorithm terminates when s and f are the 
only two remaining states. The RE new(s,f)
represents the language of the original 
automaton.

Converting GNFA into RE (cont.)
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q0

a
q1

b

q2

a+b

a+b

Example: GNFA to RE

s


f




48

q0

a
q1

b

q2

a+b

a+b

s


f


Eliminating state q2

• No paths pass through q2. There are no states 
that are connected through q2. So no need to 
change anything after deletion of q2.

Example: GNFA to RE
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q0

a
q1

a+b

s


f


Eliminating state q2

• No paths pass through q2. There are no states 
that are connected through q2. So no need to 
change anything after deletion of q2.

Example: GNFA to RE
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q0

a
q1

a+b

s


f


Example: GNFA to RE



Eliminating state q0

• The only path through q0 is s  q1. 

• We add an edge that is labeled by regular 
expression associated with the deleted edges.

new(s,q1)=old(s,q1)+old(s,q0)old(q0,q0)
*old(q0,q1)=

=+*a=a
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a
q1

a+b

s f


Eliminating state q0

• The only path through q0 is s  q1. 

• We add an edge that is labeled by regular 
expression associated with the deleted edges.

new(s,q1)=old(s,q1)+old(s,q0)old(q0,q0)
*old(q0,q1)=

=+*a=a

Example: GNFA to RE
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a
q1

a+b

s f


Eliminating state q1

• The only path through q1 is s  f.

new(s,f)=old(s,f)+old(s,q1)old(q1,q1)
*old(q1,f)=

=+a(a+b)* = a(a+b)*

Example: GNFA to RE
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a(a+b)*

s f

Eliminating state q1

• The only path through q1 is s  f.

new(s,f)=old(s,f)+old(s,q1)old(q1,q1)
*old(q1,f)=

=+a(a+b)* = a(a+b)*

Example: GNFA to RE
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Example II

What is the regular expression of L(A)?

Solution: In class

q0

b
q1

a a,b
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Example III

What is the regular expression of L(A)?

Solution: In class

q0 bq1

a

b

q2

a

ab



End of Unit 4
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