
Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

CSC 520, Spring 2020

Principles of
Programming Languages

Michelle Strout

Version: 1 April 13, 2020

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Plan
• Announcements
– HW8 is due Wednesday April 15th
– HW9 was posted last Friday and is due Wednesday April 22th

• Last time
– Type inference
– Solving type inference constraints

• Today
– HW7 review
– HW8 discussion
– Moving from type schemes to types (Instantiation)
– Moving from types to type schemes (Generalization)

2

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

HW7: List in Impcore problem

• Note Make-Array
– Takes an expression of the element type to initialize entries

• Empty list introduction rule
– Need to indicate what the type of the elements will be
– Ideas how?

3

‘() is enough?
‘(int)
Emptylist int
emptyList 42

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Hints for HW8

• See piazza post @379 for a lot of code from the
book organized in one file

• Any questions about that code at this point? Can
also post questions about the code to piazza.

• You cannot share any of your solve code with
anyone but your partner (<30 lines in key)

• You can share your constraints that you are
putting in “constraints.sml”. Do not use anyone
else’s posted constraints as your constraints. Do
use them to test your code.

4

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 5

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 6

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 7

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 8

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 9

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 10

Question:	Constraints	are	in	terms	of	type	schemes	or	types?
datatype con = ~ of ty * ty

| /\ of con * con
| TRIVIAL

datatype ty = TYVAR of tyvar | TYCON of tycon
| CONAPP of ty * ty list

datatype type_scheme = FORALL of tyvar list * ty

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 11

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 12

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Why the freshness requirement?

• Consider

• Imagine we ignore the freshness constraint when
instantiating fst type

• From if we get the following unsatisfiable
constraints

13

Gamma = {fst : forall 'a 'b. 'a * 'b -> 'a, y : 'ay}

‘a1 ~ int /\ ‘ay1 ~ bool, Gamma |- if (y, fst 2 3, 4): int

fst : ‘ay * ‘b -> ‘ay

‘ay ~ bool
‘ay ~ int

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Why the distinctness requirement?

• Consider

• Imagine we ignore the distinctness constraint
when instantiating fst type

• From apply rule, we get the following
unsatisfiable constraints

14

Gamma = {fst : forall 'a 'b. 'a * 'b -> 'a, y : 'ay}

‘a1 ~ int /\ `b1 ~ bool, Gamma |- fst 2 #t : int

fst : ‘a1 * ‘a1 -> ‘a1

‘a1 ~ int
‘a1 ~ bool

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 15

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 16

• The set A above will be useful when some variables in tau are
mentioned in the environment. Can’t generalize over them.

• Example fst: generalize(‘a * ‘b -> ‘a, emptyset)
= forall ‘a, ‘b. ‘a * ‘b -> ‘a

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 17

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 18

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 19

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 20

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Let Examples
• Questions
– What are types for cons and pair? cons : forall ‘a. ’a * ‘a list -> ‘a list,

pair : forall ‘a, ‘b. ‘a * ‘b -> ’a * ‘b
– Can the type for ys be of the form forall ’a . ‘a list? No. If not why? 7
– For each example below, what are the types for s and extend?
– Which of the below will correctly type check?

21

(lambda (ys)
(let ([s (lambda (x) (cons x '()))])

(pair (s 1) (s #t))))

(lambda (ys)
(let ([extend (lambda (x) (cons x ys))])

(pair (extend 1) (extend #t))))

(lambda (ys)
(let ([extend (lambda (x) (cons x ys))])

(extend 1)))

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Let Examples
• Question: What are the type constraints for the

below?

22

(lambda (ys)
(let ([s (lambda (x) (cons x '()))])

(pair (s 1) (s #t))))

(lambda (ys)
(let ([extend (lambda (x) (cons x ys))])

(pair (extend 1) (extend #t))))

???

???

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 23

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Let with constraints
• Operationally
– 1. typesof: returns tau1, ..., taun and C
– 2. val theta = solve C
– 3. C-prime from map, conjoinConstraints, dom, inter,

freetyvarsGamma
– 4. freetyvarsGamma, union, freetyvarsConstraint
– 5. Map anonymous lambda using generalize, get all the sigma_i
– 6. Extend the typing environment Gamma (pairfoldr)
– 7. Recursive call to type checker, gets C_b, \tau
– 8. Return (tau, C’ /\ C_b)

24

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 25

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 26

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher 27

Michelle Strout, CSC 520, Spring 2020Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Managing Quantified Types

28

