CSC 520, Spring 2020

# Principles of Programming Languages

Michelle Strout



Version: 1

April 13, 2020



#### Plan

#### • Announcements

- HW8 is due Wednesday April 15th
- HW9 was posted last Friday and is due Wednesday April 22th

#### • Last time

- Type inference
- Solving type inference constraints

# • Today

- HW7 review
- HW8 discussion
- Moving from type schemes to types (Instantiation)
- Moving from types to type schemes (Generalization)

# HW7: List in Impcore problem



#### • Note Make-Array

- Takes an expression of the element type to initialize entries

 $\frac{\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{1}: \text{int} \qquad \Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash e_{2}: \tau}{\Gamma_{\xi}, \Gamma_{\phi}, \Gamma_{\rho} \vdash \text{make-array}(e_{1}, e_{2}): \text{array}(\tau)}$ 

(MakeArray)

# • Empty list introduction rule

- Need to indicate what the type of the elements will be

- Ideas how?

```
`() is enough?
`(int)
Emptylist int
emptyList 42
```



#### **Hints for HW8**

- See piazza post @379 for a lot of code from the book organized in one file
- Any questions about that code at this point? Can also post questions about the code to piazza.
- You cannot share any of your solve code with anyone but your partner (<30 lines in key)
- You can share your constraints that you are putting in "constraints.sml". Do not use anyone else's posted constraints as your constraints. Do use them to test your code.

# What is a substitution?



## Formally, $\theta$ is a function:

- Replaces a *finite* set of type variables with types
- Apply to type, constraint, type environment, ...

# In code, a data structure:

- "Applied" with tysubst, consubst
- Made with idsubst, a |--> tau, compose
- Find domain with dom



Computer Science

## Substitution preserves type structure

#### **Type structure:**

#### datatype ty

- = TYVAR of tyvar
- | TYCON of name
- | CONAPP of ty \* ty list

#### Substitution replaces only type variables:

- Every type constructor is unchanged
- Distributes over type-constructor application

 $\theta$ (TYCON  $\mu$ ) = TYCON  $\mu$ 

 $\theta$ (CONAPP  $(\tau, [\tau_1, \ldots, \tau_n])) = \text{CONAPP} (\theta \tau, [\theta_1 \tau_1, \ldots, \theta_n \tau_n]))$ 



We infer stratified "Hindley-Milner" types

#### Two layers: Monomorphic types $\tau$ Polymorphic type schemes $\sigma$

**Each variable in**  $\Gamma$  introduced via LET, LETREC, VAL, and VAL-REC has a type scheme  $\sigma$  with  $\forall$ .

Each variable in  $\Gamma$  introduced via LAMBDA has a degenerate type scheme  $\forall . \tau$ —a type, wrapped.



# **Type inference Algorithm**

Given  $\Gamma$  and e, compute C and  $\tau$  such that  $C, \Gamma \vdash e : \tau$ 

**Extend to list of**  $e_i$ :  $C, \Gamma \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n$ 

$$\frac{\Gamma \vdash e_1 : \texttt{bool} \qquad \Gamma \vdash e_2 : \tau \qquad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \mathsf{IF}(e_1, e_2, e_3) : \tau} \qquad (\mathsf{IF})$$

becomes (note equality constraints with ~)  $\frac{C, \Gamma \vdash e_1, e_2, e_3 : \tau_1, \tau_2, \tau_3}{C \wedge \tau_1 \sim bool \wedge \tau_2 \sim \tau_3, \Gamma \vdash \mathsf{IF}(e_1, e_2, e_3) : \tau_3} \quad (\mathsf{IF})$ 

# Key ideas



Type environment  $\Gamma$  binds var to type scheme  $\sigma$ 

- app2:  $\forall \alpha, \beta . (\alpha \to \beta) \times \alpha \times \alpha \to \beta$
- cc:  $\forall \alpha . \alpha$  list list  $\rightarrow \alpha$
- car:  $\forall \alpha . \alpha$  list  $\rightarrow \alpha$
- n : ∀.int (note empty ∀)

Judgment  $\Gamma \vdash e : \tau$  gives expression *e* a type  $\tau$ (Transitions happen automatically!)

# Key ideas



#### Definitions are polymorphic with type schemes

Each use is monomorphic with a (mono-) type

#### Transitions:

- At use, type scheme instantiated automatically
- At definition, automatically abstract over tyvars

Question: Constraints are in terms of type schemes or types?



# Moving between type scheme and type

From  $\sigma$  to  $\tau$ : instantiate

From  $\tau$  to  $\sigma$ : generalize

 $\tau ::= \alpha$   $\mid \mu$   $\mid (\tau_1, \dots, \tau_n) \tau$   $\sigma ::= \forall \alpha_1, \dots, \alpha_n, \tau$ 



# From Type Scheme to Type

VAR rule instantiates type schema with fresh and distinct type variables:

$$\Gamma(x) = \forall \alpha_1, \dots \alpha_n . \tau$$

$$\frac{\alpha'_1, \dots \alpha'_n \text{ are fresh and distinct}}{T, \Gamma \vdash x : ((\alpha_1 \mapsto \alpha'_1) \circ \dots \circ (\alpha_n \mapsto \alpha'_n))\tau} \quad (VAR)$$

## Why the freshness requirement?



#### • Consider

Gamma = {fst : forall 'a 'b. 'a \* 'b -> 'a, y : 'ay}

`a1 ~ int /\ `ay1 ~ bool, Gamma |- if (y, fst 2 3, 4): int

• Imagine we ignore the freshness constraint when instantiating fst type

fst : `ay \* `b -> `ay

• From if we get the following unsatisfiable constraints

`ay ~ bool `ay ~ int

## Why the distinctness requirement?



#### • Consider

| Gamma | = | {fst | • | forall | 'a | 'b. | 'a | * | 'b -> | 'a, | У | • | 'ay} |
|-------|---|------|---|--------|----|-----|----|---|-------|-----|---|---|------|
|       |   |      |   |        |    |     |    |   |       |     |   |   |      |

`a1 ~ int /\ `b1 ~ bool, Gamma |- fst 2 #t : int

• Imagine we ignore the distinctness constraint when instantiating fst type

fst : 'a1 \* 'a1 -> 'a1

• From apply rule, we get the following unsatisfiable constraints

`a1 ~ int
`a1 ~ haal

`al ~ bool



Goal is to get forall:

-> (val fst (lambda (x y) x)) fst : (forall ('a 'b) ('a 'b -> 'a))

#### First derive:

 $T, \emptyset \vdash (\texttt{lambda} (x y) x) : \alpha \times \beta \rightarrow \alpha$ 

Abstract over  $\alpha, \beta$  and add to environment:

 $\texttt{fst}: \forall \alpha, \beta \, . \, \alpha \times \beta \to \alpha$ 

#### **Generalize Function**



#### Useful tool for finding quantified type variables:

$$\texttt{generalize}(\boldsymbol{\tau}, A) = \forall \alpha_1, \dots, \alpha_n \, . \, \boldsymbol{\tau}$$

where

$$\{\alpha_1,\ldots,\alpha_n\} = \operatorname{ftv}(\tau) - A$$

**Examples:** 

 $\begin{array}{ll} \texttt{generalize}(\alpha \times \beta \to \alpha, \emptyset) &= \forall \alpha, \beta \, . \, \alpha \times \beta \to \alpha \\ \texttt{generalize}(\alpha \times \beta \to \alpha, \{\alpha\}) = \forall \beta \, . \, \alpha \times \beta \to \alpha \end{array}$ 

- The set A above will be useful when some variables in tau are mentioned in the environment. Can't generalize over them.
- Example fst: generalize('a \* 'b -> 'a, emptyset)
  = forall 'a, 'b. 'a \* 'b -> 'a



Computer Science

# First candidate VAL rule (no constraints)

## **Empty environment:**

$$T, \emptyset \vdash e : \tau$$
$$\frac{\sigma = \texttt{generalize}(\tau, \emptyset)}{\langle \mathsf{VAL}(x, e), \emptyset \rangle \to \{x \mapsto \sigma\}}$$

(VAL WITH 
$$T$$
)

#### But we need to handle nontrivial constraints

# Example with nontrivial constraints

(val pick (lambda (x y z) (if x y z)))
During inference, we derive the judgment:

 $\begin{array}{l} \alpha_x \sim \text{bool} \land \alpha_y \sim \alpha_z, \emptyset \vdash \\ \text{(lambda (x y z) (if x y z)):} \alpha_x \times \alpha_y \times \alpha_z \rightarrow \alpha_z \end{array}$ 

Before generalization, solve the constraint:

$$\theta = \{\alpha_x \mapsto \texttt{bool}, \alpha_y \mapsto \alpha_z\}$$

So the type we need to generalize is

 $\theta(\alpha_x \times \alpha_y \times \alpha_z \to \alpha_z) = \texttt{bool} \times \alpha_z \times \alpha_z \to \alpha_z$ 

And generalize(bool  $\times \alpha_z \times \alpha_z \to \alpha_z, \emptyset)$  is

$$\forall \alpha_z \, . \, \texttt{bool} imes \alpha_z imes \alpha_z imes \alpha_z o \alpha_z$$



# 2nd candidate VAL rule (no context)

 $C, \emptyset \vdash e : \tau$   $\theta C \text{ is satisfied}$  $\frac{\sigma = \text{generalize}(\theta \tau, \emptyset)}{\langle \mathsf{VAL}(x, e), \emptyset \rangle \rightarrow \{x \mapsto \sigma\}}$ (VAL 2)

#### But we need to handle nonempty contexts

Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

Michelle Strout, CSC 520, Spring 2020 **19** 



# VAL rule — the full version

# $C, \Gamma \vdash e : \tau$

 $\begin{array}{ll} \theta C \text{ is satisfied} & \theta \Gamma = \Gamma \\ \sigma = \texttt{generalize}(\theta \tau, \texttt{ftv}(\Gamma)) \\ \hline \langle \texttt{VAL}(x, e), \Gamma \rangle \to \Gamma\{x \mapsto \sigma\} \end{array}$ 

(VAL



#### **Let Examples**

## Questions

- What are types for cons and pair? cons : forall 'a. 'a \* 'a list -> 'a list, pair : forall 'a, 'b. 'a \* 'b -> 'a \* 'b
- Can the type for ys be of the form forall 'a . 'a list? No. If not why? 7
- For each example below, what are the types for s and extend?
- Which of the below will correctly type check?

(lambda (ys) (let ([s (lambda (x) (cons x '()))]) (pair (s 1) (s #t))))

(lambda (ys)
 (let ([extend (lambda (x) (cons x ys))])
 (pair (extend 1) (extend #t))))

Slide Content Credits: Tufts Comp105 by Norman Ramsey and Kathleen Fisher

#### **Let Examples**



# • Question: What are the type constraints for the below?

| (lambda | (ys) |          |       |       |   |         |
|---------|------|----------|-------|-------|---|---------|
| (let    | ([s  | (lambda  | (x)   | (cons | x | '()))]) |
| (F      | air  | (s 1) (s | ; #t) | )))   |   |         |

???

(lambda (ys)
 (let ([extend (lambda (x) (cons x ys))])
 (pair (extend 1) (extend #t))))

???

# Let



 $C, \Gamma \vdash e_{1}, \dots, e_{n} : \tau_{1}, \dots, \tau_{n}$   $\theta C \text{ is satisfied} \qquad \theta \text{ is idempotent}$   $C' = \wedge \{\alpha \sim \theta \alpha \mid \alpha \in (dom\theta \cap \operatorname{ftv}(\Gamma))\}$   $\sigma_{i} = \operatorname{generalize}(\theta \tau_{i}, \operatorname{ftv}(\Gamma) \cup \operatorname{ftv}(C')), \quad 1 \leq i \leq n$   $C_{b}, \Gamma \{x_{1} \mapsto \sigma_{1}, \dots, x_{n} \mapsto \sigma_{n}\} \vdash e : \tau$   $C' \wedge C_{b}, \Gamma \vdash \operatorname{LET}(\langle x_{1}, e_{1}, \dots, x_{n}, e_{n} \rangle, e) : \tau$ (LET)

- If it's not mentioned in the context, it can be anything: independent
- If it is mentioned in the context, don't mess with it: dependent



#### Let with constraints

## Operationally

- 1. typesof: returns tau1, ..., taun and C
- -2. val theta = solve C
- 3. C-prime from map, conjoinConstraints, dom, inter, freetyvarsGamma
- 4. freetyvarsGamma, union, freetyvarsConstraint
- 5. Map anonymous lambda using generalize, get all the sigma\_i
- 6. Extend the typing environment Gamma (pairfoldr)
- 7. Recursive call to type checker, gets C\_b, \tau
- **− 8. Return** (tau, C' ∧ C\_b)

# **Idempotence**



 $\theta \circ \theta = \theta$ 

#### Implies: Applying once is good enough.

 $\begin{array}{ccc} \mathbf{Good} & \mathbf{Bad} \\ & \alpha \mapsto \mathsf{int} & \alpha \mapsto \alpha \, \mathsf{list} \\ & \alpha \mapsto \beta & \alpha \mapsto \beta, \beta \mapsto \gamma \\ & \alpha_1 \mapsto \beta_1, \alpha_2 \mapsto \beta_2 \end{array}$ 

Implies: If  $\alpha \mapsto \tau \in \theta$ , then  $\theta \alpha = \theta \tau$ .

# VAL-REC rule



# $\begin{array}{ll} C, \Gamma\{x \mapsto \alpha\} \vdash e : \tau & \alpha \text{ is fresh} \\ \theta(C \wedge \alpha \sim \tau) \text{ is satisfied} & \theta\Gamma = \Gamma \\ \sigma = \texttt{generalize}(\theta\alpha, \texttt{ftv}(\Gamma)) \\ \hline \langle \texttt{VAL-REC}(x, e), \Gamma \rangle \rightarrow \Gamma\{x \mapsto \sigma\} \end{array} \tag{VALREC}$

# LetRec



 $\Gamma_e = \Gamma\{x_1 \mapsto \alpha_1, \dots, x_n \mapsto \alpha_n\}, \quad \alpha_i \text{ distinct and fresh}$  $C_e, \Gamma_e \vdash e_1, \ldots, e_n : \tau_1, \ldots, \tau_n$  $C = C_e \wedge \tau_1 \sim \alpha_1 \wedge \ldots \wedge \tau_n \sim \alpha_n$  $\theta C$  is satisfied  $\theta$  is idempotent  $C' = \bigwedge \{ \alpha \sim \theta \alpha \mid \alpha \in dom\theta \cap ftv(\Gamma) \}$  $\sigma_i = \texttt{generalize}(\theta \tau_i, \texttt{ftv}(\Gamma) \cup \texttt{ftv}(C')), \quad 1 \leq i \leq n$  $C_b, \Gamma\{x_1 \mapsto \sigma_1, \ldots, x_n \mapsto \sigma_n\} \vdash e : \tau$  $C' \wedge C_b, \Gamma \vdash \mathsf{LETREC}(\langle x_1, e_1, \ldots, x_n, e_n \rangle, e) : \tau$ (LETREC)

# **Managing Quantified Types**



|                | val and val-rec                                                      | let, letrec,                                      | lambda              |
|----------------|----------------------------------------------------------------------|---------------------------------------------------|---------------------|
| forall         | FORALL contains all variables (because none are free in the context) | FORALL contains variables not free in the context | FORALL is empty     |
| Generalization | Generalize over all variables (because none are free in the context) | Generalize over variables not free in the context | Never<br>generalize |