
Lecture #2
MDP and POMDP Formulation
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Objectives of this Lecture

I Introduce formulation of decision making problems.

I Distinguish between Markov Decision Process (MDP) and Partially
Observable MDP (POMDP) problems.

! Some of the material was adapted from David Silver (UCL, DeepMind), Mykel Kochenderfer

(Stanford), Pieter Abbeel (Berkeley), Nikolay Atanasov (UCSD) and others.
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Recall from Previous Lecture
State Transition and Observation models

I Motion model or (state transition model):

Xk+1 = f (Xk , uk ,wk) ∼ PT (Xk+1 | Xk , uk)

I Observation model (Measurement likelihood):

zk = h(Xk , vk) ∼ PZ (zk | Xk)

I Discrete time domain

I For given functions f (.) and h(.), stochasticity is due to motion
(process) and observation noise wk and vk .

I wk and vk are random variables with known/learned probability
density functions (pdf). Common assumption - statistical
independence: ∀k : wk ⊥⊥ vk ; ∀j 6= k : wj ⊥⊥ wk

I More generally, the probabilistic models [e.g. PT (Xk+1 | Xk , uk) and
PZ (zk | Xk)] could be learned from data.
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Recall from Previous Lecture
Gaussian State Transition and Observation models

I For an additive Gaussian noise, with wk ∼ N (0,Σw ) and
vk ∼ N (0,Σv ) :

PT (Xk+1 | Xk , uk) =
1√

det 2πΣw

exp{−1

2
‖Xk+1 − f (Xk , uk)‖2

Σw
}

PZ (zk | Xk) =
1√

det 2πΣv

exp{−1

2
‖zk − h(Xk)‖2

Σv
}

where ‖a‖2
Σ
.

= aTΣ−1a is the squared Mahalanobis norm.
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Recall from Previous Lecture
Bayesian Inference

Apply Bayes rule, chain rule and use causality:

I Recursive formulation:

P(Xk | H−k ) =

∫
Xk−1

P(Xk | Xk−1, ak−1,Hk−1)P(Xk−1 | Hk−1)dXk−1

b[Xk ] =
P(zk | Xk)P(Xk | H−k )

P(zk | H−k )

I Smoothing formulation (e.g. X0:k
.

= {X0, . . . ,Xk}):

P(X0:k | H−k ) = P(Xk | Xk−1, ak−1,Hk−1)P(X0:k−1 | Hk−1)

b[X0:k ] =
P(zk | Xk)P(X0:k | H−k )

P(zk | H−k )
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Alternative Notations (AI)
State Transition and Observation models

I Notations:
I State: s or S (instead of X )
I Observation: o (instead of z or y)

I Models:
I State transition model: T (s, a, s ′) = P(s ′ | s, a)

Defines the probability of being in state s ′ after taking an action a in
state s.

I Observation model:

o Probability of observing o given state s: O(s, o) = P(o | s)
o In some formulations, the observation can also depend on the action

a: O(s, a, o) = P(o | s, a)
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Markov Chain

A Markov Chain is a stochastic process defined by a tuple (X ,P0,PT ):

I X is a discrete/continuous/hybrid state space

I P0 is a prior pmf/pdf

I PT (X ′ | X ) is a conditional pmf/pdf representing the transition model

In the (finite-dimensional) discrete case, the transition pmf can be
summarized by a matrix Pij

.
= PT (Xt+1 = i | Xt = j)
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Example: Student Markov Chain ;)
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Markov Reward Process (MRP)

A Markov Reward Process (MRP) is a Markov Chain with state costs
(rewards) defined by a tuple (X ,P0,PT , r , γ):

I X ,P0 and PT are defined as in Markov Chain

I r(X ) is a function specifying the reward of state X ∈ X
o Alternatively: cost function c(X )

I γ ∈ [0, 1] is a discount factor
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Example: Student Markov Reward Process ;)
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Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a Markov Reward Process with
controlled transitions defined by a tuple (X ,A,PT , r , γ):

I X is a discrete/continuous state space

I A is a discrete/continuous action set

I PT (X ′ | X , a) is the transition (motion) model

I r(X , a) is a function specifying the reward of applying action a ∈ A
in state X ∈ X

o Alternatively: cost function c(X , a)
o We want to minimize cost c(X , a), or maximize reward r(X , a)
o In this course, we shall use both settings

I γ ∈ [0, 1] is a discount factor
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Example: Markov Decision Process
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Graphical View of MDP

Xt Xt+1 Xt+2

at at+1 at+2

rt rt+1 rt+2

· · ·
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Objective Function

I Consider planning session at time t
.

= 0

I Denote the set of possible actions at time i by Ai

I Consider a sequence of actions of length T ,

a0:T−1
.

= {a0, . . . , aT−1}, with ai ∈ Ai

I Objective function - expected cumulative reward (cost) starting from
state X0 ∈ X for an action sequence a0:T−1:

J(X0, a0:T−1)
.

= E{
T−1∑
t=0

r(Xt , at) + rT (XT )}

o rT is the terminal reward (cost)
o Q:Expectation over what?
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Control Policy & Value Function

Admissible control policy: a sequence π0:T−1 of functions πt that map
any state Xt ∈ X to a feasible action/control at ∈ A(Xt), i.e.

πt : Xt 7→ at ∀Xt ∈ X

Value function: The expected cumulative reward, of a policy π applied
to an MDP (X ,A,PT , r , γ) starting from state X ∈ X at time t = 0:

I Finite horizon:

V
π
0 (X )

.
= E

[
T−1∑
t=0

r(Xt , at) + rT (XT ) | X0 = X , at = πt(Xt)

]
I Discounted infinite-horizon:

V
π
0 (X )

.
= E

[
∞∑
t=0

γtr(Xt , at) | X0 = X , at = π(Xt)

]

I Stochastic policy: change to at ∼ π(xt)

As T →∞, optimal policies become stationary, i.e. π ≡ π0 = π1 = . . ..
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Discount Factor

The discount factor γ specifies the present value of future costs:

I γ close to 0 leads to myopic (greedy) evaluation

I γ close to 1 leads to non-myopic (long horizon) evaluation

I Mathematically convenient, as it avoids infinite cumulative
rewards/costs as T →∞
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Optimal Policy and Action Sequence

Recall:

Vπ0 (X )
.

= E

[
T−1∑
t=0

r(Xt , at) + rT (XT ) | X0 = X , at = πt(Xt)

]

J(X0, a0:T−1)
.

= E{
T−1∑
t=0

r(Xt , at) + rT (XT )}

Optimal policy π? is the one that maximizes the expected cumulative
reward (or minimizes the expected cumulative cost):

π? = arg max
π

Vπ0 (x)

Optimal action sequence a?0:T−1:

a?0:T−1 = arg max
a0:T−1

J(X0, a0:T−1)
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Comparison of Markov Models

Observed Partially Observed
Uncontrolled

Markov Chain / MRP HMM
(”Passive”)

Controlled
MDP POMDP

(”Active”)

I Hidden Markov Model (HMM) = Markov Chain & Partial
Observability

I Markov Decision Process (MDP) = Markov Chain & Control

I Partially Observable Markov Decision Process (POMDP) =

= Markov Chain & Partial Observability & Control
= HMM & Control
= MDP & Partial Observabilty
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Partially Observable Markov Decision Process (POMDP)

A Partially Observable Markov Decision Process (POMDP) is a
Markov Decision Process with hidden states.

A POMDP is a tuple (X ,A,Z,P0,PT ,PZ , r , γ)

I X , A and Z are state, action and observation spaces
Can be discrete, continuous, or hybrid

I P0 is a priori pmf/pdf

I PT (Xk+1 | Xk , ak) and PZ (z | X ) are state transition and
observation models

I r(X , a) or r(b, a) are functions specifying the reward (cost) of
applying action/control a ∈ A in state X ∈ X

I γ ∈ [0, 1] is the discount factor

c©Vadim Indelman Autonomous Navigation and Perception (086762), v1.0 25



Posterior Belief and Bayesian Inference

I Posterior belief at time instant k :

b[Xk ]
.

= P(Xk | a0:k−1, z1:k) ≡ P(Xk | Hk)

where history Hk and propagated history H−k are defined as

Hk
.

= {a0:k−1, z1:k} = H−k ∪ {zk} , H−k
.

= {a0:k−1, z1:k−1}

I From previous lecture - Bayesian inference:
I Joint distribution:

P(X0:k , a0:k−1, z1:k) = P(X0)
k∏

i=1

PT (Xi | Xi−1, ai−1)PZ (zi | Xi )

I Bayes filter:

P(Xk | Hk ) =
1

P(zk | H−
k )

PZ (zk | Xk )

∫
Xk−1

PT (Xk | Xk−1, ak−1)P(Xk−1 | Hk−1)dXk−1
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Sufficient Statistics

I The posterior belief b[Xk ]
.

= P(Xk | Hk) is a sufficient statistics for Xk ,
under the undertaken assumptions (Markov, measurement and process
noise statistical independence).

I Sufficient statistics:

I The data/information available to the robot at time k to determine
its action/control ak is Hk

.
= {a0:k−1, z1:k}.

I A statistic ζk = s(Hk) is a function of the information available at
time k to infer the state Xk .

I The statistic ζk = s(Hk) is sufficient for Xk if the conditional
distribution of Xk given the statistic ζk does not depend on Hk .

I In other words: b[Xk ] is a compact representation of Hk .

I Example: Two first moments for a Gaussian distribution.
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Value Function and Policy

I Recall POMDP is a tuple (X ,A,Z,P0,PT ,PZ , r , γ),
where prior distribution/belief is over state X at planning time
t
.

= 0, i.e. b0
.

= P0(X ).

I Policy: π : b 7→ a for all possible beliefs

I Value function (e.g. discounted infinite horizon):

Vπ0 (b0)
.

= E{
∑
t

γtr(bt , at) | at = π(bt)}

A particular case is (more soon):

Vπ0 (b0)
.

= E{
∑
t

γtr(Xt , at) | X0 ∼ b0, at = π(bt)}

I As previously, policy could be also stochastic (at ∼ π(bt))
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Belief MDP

I The Bayes filter tracks and updates sufficient statistics (the belief).
In general: bk = ψ(bk−1, ak−1, zk)

o E.g. in a recursive formulation:
b[Xk ] = ηPZ (zk | Xk)

∫
Xk−1

PT (Xk | Xk−1, ak−1)b[Xk−1]dXk−1

I Because the posterior belief is a sufficient statistic for the state, we
can convert a POMDP (X ,A,Z,P0,PT ,PZ , r , γ) into an equivalent
belief MDP, (B,A,Pψ, r , γ), where

o B represents the belief space, a continuous space of pdfs/pmfs over
X , i.e. space of distributions

o Pψ(bk+1 | bk , ak) is a transformed transition model (next slide)

o r(b, a) is either (as earlier):

I the transformed reward (cost): r(b, a) =
∫
X r(X , a)b[X ]dX

I an information-theoretic reward (to be discussed later)
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Belief MDP

I The transformed transition/motion model Pψ(bk+1 | bk , ak) is

Pψ(bk+1 | bk , ak) = E
zk+1∼P(.|bk ,ak )

[P(bk+1 | bk , ak , zk+1)]

=

∫
zk+1

P(zk+1 | bk , ak)1 [bk+1 = ψ(bk , ak , zk+1)] dzk+1
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Computational Complexity

I ”Curse of dimensionality” & ”curse of history”: the complexity of
planning grows exponentially with the size of the state space and
the planning horizon (see e.g. [Papadimitriou and Tsitsiklis, 1987])

Belief tree. Figure from [Ye et al., 2017]
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Open Loop vs. Closed Loop Control

I Open loop: actions/controls a0:T−1 are determined at once at time
0 as a function of the initial state X0 (fully observable case) or initial
belief b0 (partially observable case)

I Closed loop (policy): actions/controls are determined
”just-in-time” as a function of the state Xt (fully observable case) or
history Hk

.
= {a0:t−1, z0:T} (partially observable case)

A special case of the closed control methodology is to disregard current
state/history information, which yields an open loop setting.
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Problem Variations

I Fully observable vs partially observable (MDP vs POMDP)

I Stationary vs. nonstationary (time (in-)dependent models)

I Finite vs. continuous state space X and action/control space A
I Represent probabilistic models with a tabular approach vs. function

approximation (e.g. neural networks)

I Parametric vs. non-parametric probabilistic models

I Discrete vs. continuous (planning) time:
I Finite-horizon vs. infinite-horizon discrete time
I Continuous time: Hamilton-Jacobi-Bellman (HJB) Partial

Differential Equation (PDE) [outside scope]

I MDP or POMDP models are unknown - Reinforcement Learning
(RL) and Imitation Learning (IL)
I Model-based approaches: explicitly learn/approximate models from

experience and use optimal control algorithms
I Model-free approaches: directly learn a control policy, without

explicitly learning/approximating motion/observation models

I Offline vs. online methods
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Example: Grid World Navigation

I Navigate to a goal w/o crashing into
obstacles, given map

I Formalization:
I State space: robot pose (2D or 3D)
I Actions: allowable robot movement (can be

discrete or continuous)
examples: {↑,←,→, ↓}, control angle w/
constant velocity

I Reward: 1 until the goal is reached, −∞ for
colliding with an obstacle

I Can be deterministic or stochastic, fully or
partially observable
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