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Abstract. Given a graph G, a natural group structure arising from G is its set of automorphisms on the
vertices together with the operation of function composition. A natural vector space arising from G is its

Edge Space, E(G), defined as the formal vector space generated by the edges of G with coefficients in C. Two
natural subsapces of E(G) that arise from G are its cycle space and cut space — the null space and row space

of the incidence matrix of G. We investigate representations of Aut(G) over E(G), Cyc(G) and Cut(G). We

show that for the graphs K3,K4, and K5, the representation ρ : Aut(G) → E(G) by Aut(G) acting on the
vertices has the irreducible decompostion Cyc(G) ⊕ Cut(G). With the support of computational evidence,

we conjecture that this irreducible decomposition holds for every complete graph on n vertices.

1. Introduction

Representation theory is a rich subject with many applications to areas in math as well as areas outside
of math, including physics, coding theory, and more recently computer science. As representation theory
has seen much success in the field of algebra, a natural topic to explore is how representation theory can be
used in the context of algebraic graph theory. Some exciting work has already been done in this area. For
example, given a group H and a graph G, deciding whether H has a nontrivial representation ρ : H → Aut(G)
is known to being closely related to the graph isomophism problem [1]. In addition, a well known result,
Frucht’s Theorem, states that for every finite group H, there exists infinitely many non-isomorphic simple
connected graphs G such that H ∼= Aut(G). The relation between a group and the automorphism group of
its Cayley graph has been well studied in the literature. Results on the decomposition of graph eigenspaces
into reducible and irreducible subspaces has been presented in Biggs’s Algebraic Graph Theory [2]. Other
work on Singular Graphs (graphs whose adjacency matrix is singular) has been done by Alu Al-Tarimshawy
in his doctorate thesis [3]. In addition, work by Gregory Berkolaiko and Wen Liu showed that the eigenspaces
of symmetric graphs are not typically irreducible [4].

Despite these successes, there does not appear to be results studying the representation of the automor-
phism group of a graph G acting on its natural vectors spaces Cyc(G) and Cut(G). This will be the main
focus of this paper.

2. Automorphisms of Graphs

We consider graphs which are finite and loopless. Although multiedges are allowed, for the purposes of
this paper they do not change any results, and so we do not consider multigraphs. Let G be a graph with
n vertices. A natural action on G is to permute these vertices, which in turn permutes the corresponding
edges. Any permutation which preserves edge structure is called an automorphism of G.

Definition 2.1. An automorphism of a graph G is a permutation on the vertices

σ : V (G)→ V (G)

such that
∀uv ∈ E(G), σ(u)σ(v) ∈ E(G).

It will be convienent to label the vertices as elements of { 1, . . . , n }, and view σ as an element of Sn, the
symmetric group on n objects. For clairity, we now provide an example of an automorphism on a graph.

Example 2.2. For the graph in Figure 1 below, we see that (12) is an automoprhism, yet (14) is not, as
{ 1, 2 } /∈ E(G).

The set of all automorphisms of G, denoted Aut(G), forms a group under function composition. It can
be checked that the following graphs have the corresponding automorphism groups:
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1 2

34

Figure 1. (12) is an automorphism, while (14) is not.

• Aut(Kn) ∼= Sn
• Aut(Cn) ∼= D2n, the Dihedral Group of a regular n-gon, n ≥ 3
• Aut(Pn) ∼= Z/2Z, corresponding to reversing the direction of the path
• Aut(Starn) ∼= Sn−1

• Aut(PetersonGraph) ∼= S5

It should be noted that two nonisomorphic graphs may correspond to the same automorphism group. For
example, the star graph on n vertices and the complete graph on n − 1 vertices both have automorphism
group Sn−1.

We now introduce the edge space of a graph G as the vector space over C formally generated by the edges
of G. To do so, we consider an orientation on the edges of G and introduce a standard ordering on the
edges as follows: for each edge of G, assign the edge an orientation from the smallest vertex to the largest
vertex. We now order the edges as follows: for edges (u, v) and (a, b), if u < a, or if u = a and v < b, then
(u, v) < (a, b). We call this the standard orientation ordering of the edges. An example is provided for K4

in Figure 2.
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Figure 2. K4 with the standard orientation ordering of edges.

With the standard ordering of the edges we now construct the Incidence Matrix of a graph, which we
define below.

Definition 2.3. Let V (G) = { v1, . . . , vn } and E(G) = { e1, . . . , em }. Then the Incidence Matrix of a graph
G, denoted A(G) or just A when G is understood, is the n×m matrix defined as follows:

Aij =


1, vi is the head of ej

−1, vi is the tail of ej

0, otherwise

Example 2.4. For example, the incidence matrix of K4 with the standard orientation ordering of the edges
is given by:

A =


−1 −1 −1 0 0 0
1 0 0 −1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1


We can now define the edge space of G. where the set of edges of G form the basis elements, and the

coefficients are over C.



Definition 2.5. LetG be a graph withm edges { e1, e2, . . . , em }. Let the edges have the standard orientation
ordering. Then the edge space of G, denoted E(G), is the set of all formal linear combinations of edges of G
with coefficients in C.

We can therefore think of a set of edges in G as a vector v with m entries in E(G), where the i-th entry
in v corresponds to the weight of edge ei in G. If the i-th entry of v is negative, this means ei appears in G
with opposite orientation (i.e., from a higher labeled vertex to a lower labeled vertex). Therefore, a vector
v ∈ E(G) has the form:

v = c1(i1, j1) + c2(i2, j2) + · · ·+ cm(im, jm),

where ck ∈ C and ik, jk ∈ V (G) for 1 ≤ k ≤ m.
Two important vector spaces arise from the graph G as subspaces of E(G): the cycle space and the

cut space. Inutitively, each vector in the cycle space corresponds to a set of edges formed by a linear
combination of cycles in G, whereas each vector in the cut space correpsonds to a set of edges formed by a
linear combination of cuts in G. These spaces correspond to the Null Space and Row Space of the incidence
matrix of G. In fact, these are usually taken as the definitions for Cyc(G) and Cut(G).

Definition 2.6. The cycle space of a graph G, denoted Cyc(G) is the null space of the incidence matrix of
G. That is,

Cyc(G) = Null(A(G)).

The cut space of a graph G is the row space of the incidence matrix of G. That is,

Cut(G) = Col(AT (G)).

Since Cyc(G) and Cut(G) are a nullspace and rowspace respectively, they are subspaces of E(G).

For an intuitive understanding of why these definitions make sense, if vk ∈ V (G) is a vertex in a cycle C,
then there exist edges ei and ej of C such that vk is the head of ei and the tail of ej . Thus the k, i-th entry
of A(G) is 1, and the k, j-th entry of A(G) is -1. Since vk is incident to no other edges of C, we have that
the dot product of the k-th row of A(G) and the vector representing C is equal to∑

j : vk∈ej

Ak,j = (1) + (−1) = 0

Therefore C ∈ Null(A). As the elements of Cyc(G) are linear combinations of cycles, this shows any element
of Cyc(G) is in Null(A). For the inclusion in the other direction, and for a similar argument for Cut(G), see
Chapter 3 of [2].

3. Representations of the automorphism group of a graph

We can look at the representations of the automorphism group of a graph over the vector spaces E(G),
Cyc(G), and Cut(G). For now, we will restrict our attention to E(G). Recall for a group H and vector space
V , a representation is a homomorphism ρ : H → Aut(V ). In our case, we let H = Aut(G) and V = E(G). By
letting Aut(G) act on the vertices by permutation, the vectors in E(G) are linearly transformed. Therefore
each σ ∈ Aut(G) corresponds to a matrix ρσ which acts on E(G). Thus σ 7→ ρσ is a group representation.
We prove this formally below. To do so, we introduce some notation.

Recall a vector v ∈ E(G) has the form:

v = c1(i1, j1) + c2(i2, j2) + · · ·+ cm(im, jm),

where ck ∈ C and ik, jk ∈ V (G) for 1 ≤ k ≤ m. Then we have that σ ∈ Aut(G) acts on a vector v ∈ E(G)
as follows:

σ(v) = c1
(
σ(i1), σ(j1)

)
+ c2

(
σ(i2), σ(j2)

)
+ · · ·+ cm

(
σ(im), σ(jm)

)
.

It is quite clear to see for u, v ∈ E(G), we have

σ(u+ v) = σ(u) + σ(v).

Therefore we have that σ acts linearly on E(G). Therefore each σ ∈ Aut(G) can be mapped to a matrix ρσ
corresponding to this linear action. Note since Cyc(C),Cut(G) ⊆ E(G), we have σ acts linearly on Cyc(C)
and Cut(G) as well. We now prove that ρ : Aut(G)→ E(G) defined by σ 7→ ρσ is indeed a representation.

Theorem 3.1. Let G a graph and ρ : Aut(G) → E(G) by σ 7→ ρσ as described above. Then ρ is a
representation of Aut(G).



Proof. Let G have m edges { e1, e2, . . . , em } in the standard orientation ordering. Let σ ∈ Aut(G), and let
σ(v) denote the vector v after σ has acted on V (G). Define a matrix ρσ as follows: for i = 1, . . . ,m, let
the i-th column of ρσ equal σ(ei). Then we have established the mapping σ 7→ ρσ. We now show ρ is a
homomorphism.

Let σ, τ ∈ Aut(G). We must show ρστ = ρσρτ . By definition of the mapping σ → ρσ, we have:

ρστ =
[
στ(e1) στ(e2) . . . στ(em)

]
.

Thus the i-th column of ρστ is equal to:

(ρστ )i = στ(ei)

= σ



τ(ei)1

τ(ei)2

...
τ(ei)m


 , where τ(ei)j is the j-th entry of τ(ei)

= σ

τ(ei)1


1
0
...
0

+ τ(ei)2


0
1
...
0

+ · · ·+ τ(ei)k


0
0
...
1




= σ
(
τ(ei)1e1 + τ(ei)2e2 + · · ·+ τ(ei)mem

)
= τ(ei)1σ(e1) + τ(ei)2σ(e2) + · · ·+ τ(ei)mσ(em), by linearity

= σ(e1)τ(ei)1 + σ(e2)τ(ei)2 + · · ·+ σ(em)τ(ei)m.

Now we have that
ρσρτ =

[
σ(e1) . . . σ(em)

] [
τ(e1) . . . τ(em)

]
,

and the i-th column of ρσρτ is given by the product of ρσ and the i-th column of ρτ . That is:

(ρσρτ )i = ρσ(ρτ )i

=
[
σ(e1) . . . σ(em)

]

τ(ei)1

τ(ei)2

...
τ(ei)m


= σ(e1)τ(ei)1 + σ(e2)τ(ei)2 + · · ·+ σ(em)τ(ei)m.

Thus the i-th column in each matrix is equal, so ρστ = ρσρτ . �

Corollary 3.2. Let E(G) be the representation as described above. Then Cyc(G) and Cut(G) are subrep-
resentations.

Proof. Since Cyc(G) and Cut(G) are subspaces of E(G), we just need to show that each is invariant under
σ ∈ Aut(G). Since σ is an automorphism of G and corresponds to a relabeling of vertices, the edge structure
of any edge set of G is unchanged. Thus a a cycle in G remains a cycle; a cut remains a cut. Therefore
Cyc(G) and Cut(G) are invariant under σ. �

We now give an example of the representation of K4 over its cycle space. Recall the incidence matrix of
K4 is given by A in example 2.4. We find the null space of A has basis given by


1
−1
0
1
0
0

 ,


1
0
−1
0
1
0

 ,


0
1
−1
0
0
1







which corresponds to the cycles

1 2

34

e1

e4
−e2

1 2

34

e1

e5

−e3

1 2

34

e2

e6

−e3

Figure 3. Cycle basis for K4

Let the vector representation in E(K4) of these cycles be represented by c1, c2, c3, respectively. Since these
are basis elements of Cyc(K4), when viewed as vectors in Cyc(K4) they correspond to the vectors (1, 0, 0),
(0, 1, 0), (0, 0, 1), respectively. After permutation by σ = (1 2), these cycles become:

1 2

34
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−e1

e3
−e5

1 2

34

e4

e6

−e5

Figure 4. (1 2) acting on the cycle basis for K4

which, when viewed as elements of E(K4), are the vectors (−1, 1, 0,−1, 0, 0), (−1, 0, 1, 0,−1, 0), (0, 0, 0, 1,−1, 1)
respectively. These vectors can be written as:

−1
1
0
−1
0
0

 = −


1
−1
0
1
0
0

 = −c1


−1
0
1
0
−1
0

 = −


1
0
−1
0
−1
0

 = −c2


0
0
0
1
−1
1

 =


1
−1
0
1
0
0

−


1
0
−1
0
−1
0

+


0
1
−1
0
0
1

 = c1 − c2 + c3.

Therefore, when written as vectors in the Cycle Space with basis { c1, c2, c3 }, we have the permuted cycles
correspond to the vectors (−1, 0, 0), (0,−1, 0), and (1,−1, 1), respectively. Therefore, we have σ = (1 2) acts
as the matrix −1 0 1

0 −1 −1
0 0 1


on Cyc(K4).



4. Irreducibility of Cyc(Kn) and Cut(Kn)

Since Cyc(Kn) and Cut(Kn) are orthogonal, we have that E(Kn) = Cyc(Kn)⊕ Cut(Kn). We show that
for n = 3, 4, 5 that this is indeed the irreducible decomposition of E(Kn). We do this by computing the inner
product of the character function with itself. We start with a well known lemma in representation theory
(see Chapter 1 of [5]).

Lemma 4.1. Let ρ be a representation with its irreducible decomposition given by

ρ = ρ⊕m1
1 ⊕ ρ⊕m2

2 ⊕ . . .⊕ ρ⊕ml

l .

Let χ be the character function of ρ. Then

(χ, χ) =

l∑
i=1

m2
l .

From this we see that if (χ, χ) = 2, then each mi must equal 0 or 1, and for the sum to equal 2, we must
have ρ is the sum of two irreducible representations. Using this observation, we can now prove the following
result.

Theorem 4.2. Cyc(Kn) and Cut(Kn) are irreducible for n = 3, 4, 5.

Proof. Let χ be the character function of ρ : Aut(Kn) → E(Kn). Since ρσ is a permutation matrix, its
diagonal elements are 1 (which corresponds to a fixed edge), -1 (which corresponds to a reversed edge), and
0. Then

χ(σ) = Tr(ρσ) = # fixed edges−# reversed edges.

We start with n = 3. In this case, Aut(K3) ∼= S3. We have the following chart

cycle types e (1 2) (1 2 3)
number of cycles of this type 1 3 2

number of edges fixed 3 0 0
number of edges reversed 0 1 0

χ 3 -1 0

Now because σ and σ−1 have the same cycle type, we have χ(σ) = χ(σ−1). Recall for a representation of a
group Γ the inner product (χ, χ) is given by:

(χ, χ) =
1

|Γ|
∑
g∈Γ

χ(g)χ(g−1)

We therefore have:

(χ, χ) =
1

|S3|
∑
σ∈S3

χ(σ)χ(σ−1)

=
1

6

∑
σ∈S3

χ(σ)2

=
1

6

(
1(3)2 + 3(−1)2 + 2(0)2

)
= 2

Therefore, by lemma 4.1, we have ρ is the direct sum of two irreps. If Cyc(K3) or Cut(K3) were not irreps,
then ρ would be the direct sum of more than two irreps, a contradiction. Therefore Cyc(K3) and Cut(K3)
are irreducible.

A similar proof works for K4 and K5. �



5. Conjectures and further work

The method above of computing the inner product of E(Kn) with itself may be able to be generalized
to an arbitrary value of n to prove that Cyc(Kn) and Cut(Kn) are irreducible under this representation.
Indeed, a calculation of the characters for the representation over Cyc(Kn) up to n = 10 have shown that
these representations are in the character table of Sn, suggesting Cyc(Kn) is irreducible. We therefore make
the following conjecture:

Conjecture 5.1. The representation ρ : Aut(Kn) → E(Kn) given by the action of permuting the vertices
has the irreducible decomposition

E(Kn) = Cyc(Kn)⊕ Cut(Kn).

A natural question that follows is which irreps of Sn are Cyc(Kn) and Cut(Kn). Computations have
shows that for n = 3, 4, 5, 6 that Cyc(Kn) is the second exterior power of the standard representation. We
therefore make the following conjecture:

Conjecture 5.2. Cyc(Kn) ∼= ∧2(standard)

Plans for further work other than trying to prove the above conjectures include identifying which irrep of
Sn that Cut(Kn) is isomoprhic to, as well as investigating the irreducible decomposition of E(G) for graphs
other than Kn.
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