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Abstract. As is known to all, Fermat’s Last Theorem has long been one
of the most challenging problems. Many mathematicians have tried to prove

it. Due to their efforts, many new methods have been developed. Many
new branches. Algebraic number theory is the summary of mathematicians’

attempsts. When we discuss the solutions of polynomial equations, the unique
factorization property of elements is very important. But unfortunately, not all
rings are unique factorization domain. We need to generalize the idea of unique
factorization domain. This is the reason why we study the unique factorization

of ideals. The domain where ideals can be factored uniquely is called Dedekind
domian. This paper will discuss some properties about Dedekind domains.
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1. Why do we want to study Dedekind domains?

Dedekind domain is a very important object in algebraic number theory. First of
all, I want to talk about something about algebraic number theory. To be honest,
algebraic number theory is a “failed theory”. Why do I say that algebraic number
theory is a “failed theory”? Actually, algebraic number theory is originated from
Fermat’s Last Theorem. Mathematicians like Dedekind, Krull worked on it because
they want to prove Fermat’s Last Theorem. In this view, algebraic number theory
is similar to Galois theory. Both of them are studied to solve a kind of problems.
The difference is that Galois theory succeeded but algebraic number theory failed
to prove Fermat’s Last Theorem. What’s Fermat’s Last Theorem? Fermat claimed
that when n > 2 the equation xn +yn = zn has no integer solutions. Fermat’s Last
Theorem has long obsessed mathematicians. Mathematicians’ first attempt is to
use the knowledge of Unique Factorization. Suppose ξ is one of the nth primitive
roots of −1. Then the equation xn+yn = zn can be written as

∏n−1
i=0 (x−ξiy) = zn.

If the ring Z[ξ] is a unique factorization domain then we can use the property of
unique factorization to get a lot of useful things. However, it’s not true that every
Z[ξ] is a unique factorization domain. Due to this, we may not be able to use the
property of unique factorization. What Dedekind did was to generalize the idea of
unique factorization. For any single element, the prime element factorization of this
element might not be unique, but when we consider the prime ideal factorization
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of ideals, it might be unique. Many objects in algebraic number theory unique
factorization property of ideals. That’s where Dedekind domain comes from. In
the next section, I will introduce some results in Dedekind domain.

2. What’s Dedekind domain?

In this section, we will introduce Dedekind domains and you will see that in
Dedekind domains we have the unique factorization of prime ideals. There is a
concept, which is connected very closely to Dedekind domain.

Definition 2.1. Discrete valuation ring is a principal ideal domain which has
only one nonzero prime ideal.

There are many equivalent definition of discrete valuation ring like: Discrete
valuation ring is a principal ideal domain which has only one prime element up to
associates. Discrete valuation ring is a principal ideal domain which is local but not
a field. An example of discrete valuation ring is Z(p) = {m

n |m,n ∈ Z, p - n}(This is
actually the localization of Z at (p)). It’s easy to see these definitions are equivalent.

Next, we will introduce an important result about discrete valuation ring.

Theorem 2.2. An integral domain A is a discrete valuation ring iff it’s Noetherian,
integrally closed and has only one nonzero prime ideal.

Proof. First of all, from the definition of discrete valuation ring we know that dis-
crete valuation ring is Noetherian, integrally closed and has only one nonzero prime
ideal. What we need to show now is that if an integral domain A is Noetherian,
integrally closed and has only one nonzero prime ideal then it’s a discrete valu-
ation ring. From the definition we know that we only need to show that A is a
PID(principal ideal domain). First of all, choose a nonzero element c ∈ A. Denote
A/(c) by M . We can choose an m ∈ M such that Ann(m) is maximal among all
ideals like this kind.(This is possible because Ann(m) is an ideal in A and A is
Noetherian) Denote m by b + (c), Ann(m) = Ann(b + (c)) by p. We first show
that p is a prime ideal. For contradiction, suppose there is x and y such that
x, y ∈ p but neither x nor y is in p. Then consider Ann(xb + (c)). We know that
p ⊂ Ann(xb + (c)) and y ∈ Ann(xb + (c)). Then it contradicts the maximality of
Ann(b + (c)), hence we know that p is a prime ideal.

Second, we need to show that b
c /∈ A but c

b ∈ A. b
c /∈ A is because b = c b

c ∈ (c)
which is a contradiction. Then b

c /∈ A. Now we will show that c
b ∈ A. We know

that pb ⊂ (c), so we have p b
c ⊂ A. Since A has only one prime ideal so either

p b
c ⊂ p or p b

c = A.(since p b
c is an ideal) If p b

c ⊂ p then b
c ∈ p from the fact that A

is integrally closed. So p = ( b
c ). Then we know that the only prime ideal in A is a

principal ideal.
Finally, we need to shown that any ideal is principal ideal. Denote b

c by β, then
for any given ideal a consider the sequence a ⊂ aβ−1 ⊂ aβ−2 ⊂ .... First, this
sequence is strictly increasing because if aβ−i = aβ−i−1 then β−1 is integral over A
so contained in A, a contradiction. Then there is a maximal i such that aβ−i ⊂ A
and aβ−i have to be equal to A otherwise it will be contained in p but pβ−1 ⊂ A,
which is a contradiction to the maximality of i, so a = (βi).

¤
The reason why we introduce discrete valuation domain is because it has strong

connections with Dedekind domain.
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Definition 2.3. A Dedekind domain is an integral domain A which is Noether-
ian, integrally closed, and every nonzero prime ideal is maximal.

The connection between Dedekind domain and discrete valuation domain is the
next result we will introduce:

Proposition 2.4. A Noetherian integral domain A is a Dedekind domain iff its
localization Ap is a discrete valuation ring for any nonzero prime ideal p ∈ A.

Proof. ⇒ We know that A is Noetherian, so is its localization Ap. And when
we localize A the only prime ideal in Ap is pAp. Next we need to show that Ap

is integrally closed. To show this, we only need to show that if A is integrally
closed, then S−1A is integrally closed. If α integral over S−1A, then we have
αn + an−1α

n−1 + · · · + a1α + a0 = 0 for ai ∈ S−1A and i = 1, 2, · · · , n − 1. We
know that there is a β ∈ S such that βai ∈ A. So consider βn(αn + an−1α

n−1 +
· · ·+ a1α + a0) = 0, then we have αn + a′n−1α

n−1 + · · ·+ a′1α + a′0 = 0 for α = αβ

and a′i = aiβ
n−i. Now we know that a′i ∈ A so α ∈ A since A is integrally closed,

then we can say that α ∈ S−1A.
⇐ First of all, The localization of A, which is Ap is a discrete valuation ring.

This means that p is a maximal ideal. So we only need to show that A is integrally
closed here. For x in the field of fraction of A, if x is integral over A, then it’s also
integral over Ap for any prime ideal p. Then x ∈ Ap since Ap is integrally closed.
Now consider a, which is the set of a such that ax ∈ A. It’s easy to see that a is
an ideal. Next we claim that a is not contained in any maximal ideal p. Since for
any p, x ∈ Ap, then there is a c ∈ A\p such that cx ∈ A. So we know that a = A
so x ∈ A. Now we prove the fact that A is integrally closed.

¤
What this proposition can tell us is that if we want to determine whether a

Noetherian integral domain is a Dedekind domain, we can try to localize it and
determine whether the localization is a discrete valuation ring. What’s more, some
property can be passed from an integral domain to its localization. That is to say
sometimes we can consider the local ring to see whether we get a simplified problem.
Sometimes, instead of considering Dedekind domain, we can try to consider discrete
valuation ring. It may help us solve our problems.

The next thing I want to introduce is the most important result in the theory of
Dedekind domain, the unique factorization of ideals. The result is :

Theorem 2.5. Let A be a Dedekind domain. Every proper nonzero ideal a of A
can be written in the form a = pr1

1 · · · prn
n with the ideals pi distinct prime ideals

and ri > 0; the pi and ri are uniquely determined.

If we want to prove this theorem, we need to prove first the existence of fac-
torization and next the uniqueness of this factorization. To prove the existence of
factorization, we need a lemma.

Lemma 2.6. Let A be a Noetherian ring; then every ideal a in A contains a product
of nonzero prime ideals.

Proof. We will prove by contradiction. Suppose not, then consider the set of ideals
Σ which don’t satisfy the condition. Since A is Noetherian, we know that there
is a maximal one in Σ, denote by a. First of all, a itself can’t be prime. Then
there is x, y ∈ A, such that x, y /∈ a but xy ∈ a. Then we know that a ⊂ a + (x)
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and a ⊂ a + (y) but (a + (x))(a + (y)) ⊆ a. From the maximality of a we know
that a + (x) and a + (y) contains a product of nonzero prime ideals which is a
contradiction since their product is contained in a.

¤
The proof of the above lemma is very similar to the proof of the Fundamental

Theorem of Arithmetic. The above lemma just told us that any ideal in A contains
a product of prime ideals but we don’t know whether they are equal. Next, we
will show that they are equal and the uniqueness of the factorization. We will use
the property about localization and the connection between Dedekind domain and
discrete valuation ring. First we need some lemmas.

Lemma 2.7. Let A be a ring, and a, b two relatively prime ideals in A; then am, bn

are also two relatively prime ideals for all m,n ∈ Z
Proof. Since a, b relatively prime, then we know that there x ∈ a, y ∈ b such that
x + y = 1. Then we know that (x + y)m+n = 1. We know that (x + y)m+n =∑m+n

i=0

(
m+n

i

)
xiym+n−i. If i ≥ m then xi ∈ am, otherwise ym+n−i ∈ bn. So we

know that every term of
∑m+n

i=0

(
m+n

i

)
xiym+n−i either in am or in bn. Then we

know that (x + y)m+n = 1 is in am + bn so am, bn also two relatively prime ideals.
¤

Next lemma is very important because it tells us the corresponding of ideals
between the integral domain A and its localization Ap.

Lemma 2.8. Let p be a maximal ideal of an integral domain A, and let q be the
ideal it generates in Ap, q = pAp. The map

a + pm 7→ a + qm : A/pm → A/qm

is an isomorphism for all m ∈ N.

Proof. We know that the map above is a homomorphism first. So what we need to
show is that the map is a bijection.

First we show that this map is injective. To show this map is injective, we just
need to show that the kernel of this map is zero. Which is to say, qm∩A is pm. Then
choose x ∈ qm∩A. We know that qm = S−1pm where S = A−p, so x ∈ S−1pm∩A.
We can write x as a

s , where a ∈ pm and s ∈ S. We know that sx ∈ pm so 0 in
A/pm. We know that the only maximal ideal which contains pm in A is p. This is
because if a maximal ideal m contains pm then for any ym ∈ pm(y ∈ p), we have
ym ∈ m. From the fact that m is a maximal ideal, we know that it’s a prime ideal.
Then we know that y ∈ m, so we know that p ⊆ m, which contradicts the fact that
p is a nonzero maximal ideal. Since p is the only maximal ideal which contains pm,
we know that p/pm is the only nonzero maximal ideal in A/pm. So we know that
A/pm is a local ring. Since s /∈ p it’s not in p/pm. From this fact, we can say that
s is a unit in A/pm. Since sx = 0 in A/pm and s is unit in A/pm we know that x
is 0 in A/pm. So x is in pm. Then S−1pm ∩ A ⊆ pm. What’s more, we know that
pm ⊆ S−1pm ∩A. So we get pm = S−1pm ∩A.

Next, we will prove that this map is surjective. To prove this, we need the lemma
2.7. Choose an element a

s ∈ Ap, then s /∈ p. Since p is a maximal ideal, and s /∈ p,
we know that (s) + p = A. So (s), p are relatively prime. From lemma 2.7 we know
that (s), pm are also relatively prime. So we know that there is an element b ∈ A
such that bs + x = 1 for x ∈ pm. Then b is mapped to 1

s , and ba is mapped to a
s .

Then we can say that this map is surjective. ¤
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Now we finished our preparation of proving our main result. Next is the proof
of theorem 2.5.

Proof. First of all, we know that the ideal a contains a product of prime ideals
denote this product by b = pr1

1 · · · prn
n . From Chinese Remainder Theorem we know

that A/b ' A/pr1
1 × · · · × A/prn

n . From lemma 2.8 we know that A/pr1
1 × · · · ×

A/prn
n ' Ap1/qr1

1 × · · · × Apn
/qrn

n , where qi = piApi
for i = 1, 2, · · · , n. From this

isomorphism, we know that a/b is isomorphic to qs1
1 /qr1

1 × · · · qsn
n /qrn

n for si ≤ ri.
We know that image of the ideal ps1

1 × · · · × psn
n under this isomorphism is also

qs1
1 /qr1

1 ×· · · qsn
n /qrn

n , so we know that a = ps1
1 ×· · ·×psn

n . The above content is the
existence of the factorization. We also need to show that this factorization is unique.
If a has two different factorization say a = ps1

1 × · · · × psn
n = pt1

1 × · · · × ptn
n (Some

si, ti can be zero such that their form is the same). And we have psi
i = aApi

= pti
i

so si = ti. Then factorization is unique.
¤

Now we finished our main results about Dedekind domain. It’s easy to see
that principal ideal domain is Dedekind domain. But unique factorization doesn’t
need to be Dedeking domain and Dedekind domain doesn’t need to be unique
factorization domain. The example that is unique factorization domain but not
Dedekind domain-C[x1, x2, · · · ](infinitely many indeterminates). The example that
is Dedekind domain but not unique factorization domain is Z[

√−5].
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