
Survey on Representation Theory and Molecular Structure 
May Cai 

 
 

 
I first came across the use of representation theory in chemistry when I was searching 

up the character table for the cyclic group on three elements. I found a tool that gave me the 

characters that I was looking for, but there was a lot more information that I cared about, and 

about something called the “point group C3.” Furthermore, lower down the list were a couple 

properties that left me dumbfounded. I saw a mention to chirality, as well as a list of molecules. 

Why would chemical properties be placed next to a character table? What does representation 

theory have to do with molecules? I hope to give an answer to that statement in this survey. 

 

L-DOPA (taken from https://en.wikipedia.org/wiki/L-DOPA) 

 

First, the concept of symmetry is important in chemistry. Consider a molecule known as 

L-DOPA. It is an important amino acid, produced by the human body and used as a drug to treat 

Parksinson’s disease. It has a molecular structure depicted above, and this molecular structure 

has the important property that it doesn’t have mirror symmetry. If we view most of the molecule 

as lying flat on a plane, then the NH2 amino group would be “coming out” of the plane, and 

reflection across the plane would give a different molecule, known as D-DOPA. 

 

https://en.wikipedia.org/wiki/L-DOPA


 

D-DOPA (taken from https://en.wikipedia.org/wiki/D-DOPA) 

 

The only difference between these two molecules is that the NH2 amino group is on the 

other side of the plane. D-DOPA and L-DOPA are mirror images of one another, but D-DOPA is 

completely ignored by the human body, and thus “is basically useless.” [J20] Thus, whether or 

not a molecule has such mirror images can greatly change its behaviors in chemical processes, 

and so it is useful to know these things when we want to predict a molecule’s chemical 

properties. Likewise, rotational symmetry can help us determine other properties of molecules, 

such as their magnetic dipoles. 

Thus, given a molecule, we care about the various symmetries that act on it, and of 

course the natural thing to do is to consider the group formed by the symmetries that act on it. In 

addition to the rotational and reflectional symmetries mentioned earlier, chemists also consider 

inversion, or the map (x,y,z) ↦ (-x,-y,-z), the composition of rotation around an axis and then 

reflection across a plane normal to that axis, and of course the identity as the 5 main types of 

symmetries. As an example, H2O, for instance, has a rotation by π, and 2 reflections, one lying 

along the plane of the molecule, and one perpendicular, forming the dihedral group with 4 

elements, D4. Chemists call this the point group of the molecule, as each symmetry operation 

leaves at least one point fixed, and so D4 is the point group of H2O. [P15] 

https://en.wikipedia.org/wiki/D-DOPA


Of course, as these groups arise from operations on three-dimensional space, it is the 

most natural thing in the world to consider their representations onto Euclidean 

three-dimensional space. Here is the character table for D4, as a chemist would see it. 

 

C2v E C2(z) σv(xz) σv(yz) linear/rotation quadratic cubic 

A1 1 1 1 1 z x2, y2, z2 z3, zx2, zy2 

A2 1 1 -1 -1 Rz xy xyz 

B1 1 -1 1 -1 x, Ry xz xz2, x3, xy2 

B2 1 -1 -1 1 y, Rz yz yz2, x2y, y3 
Character table for D4 (reproduced from [Gel]) 

 

The symbol C2v refers to the group D4 in Schoenflies notation, a point group notation 

used primarily by chemists. Specifically, it refers to the group corresponding to a 2-fold rotation 

with additionally 2 planes of reflection containing the axis of rotation. The identity element is 

denoted E, C2(z) is the symbol for rotation by π (specifically along the principal z-axis), and σv 

referrs to reflection across a plane containing the principal axis (z). The parentheticals (xz) and 

(yz) indicate exactly which axes the plane lies on. 

The labels of each character, known as Mulliken symbols, also have a conventional 

meaning. A and B labels are used when they correspond to 1-dimensional representations, and 

E and T for 2- and 3-dimensional representations respectively. Furthermore, A is used when 

said one-dimensional representation is symmetric to the principal axis, and B otherwise, and the 

subscripts are used to distinguish between representations with otherwise identical Mulliken 

symbols. 

The linear/rotation column is for indicating common sets of basis vectors that produce 

each representation. For instance, a unit vector along the z-axis, when acted upon by C2v, is 



fixed by each group operation. Thus, it gives rise to the identity character A1. A unit vector along 

the x-axis is fixed by E and σv(xz), and reversed by C2 and σv(yz), giving rise to the character B1, 

and likewise a y-axis unit vector gives rise to the character B2.  And finally, the symbols Rx, Ry, 

and Rz correspond to special “rotational” vectors. The symbol Rz is the rotational vector collinear 

with the z-axis but with an orientation of counterclockwise rotation around it. A rotation operation 

will fix Rz, but any reflection will reverse the orientation of reflection, and thus that the rotational 

vector Rz gives rise to the character A2. 

The last two columns are for the degree-2 and degree-3 monomials of x, y, and z, 

respectively. Their entry comes from direct products of characters; the pointwise product of B1B2 

is A2, and likewise you’ll see that xy is in the row corresponding to the irrep A2. These are useful 

for the symmetry properties of electron orbitals (probability distributions for the locations of 

electrons of the molecule, given certain information about the energy and angular momentum of 

the molecule.) For instance, the 5 d orbitals d , d , d ,  d , and d  of H2O have physicalyx zx zy z2 x2 − y2  

shapes with symmetries corresponding to the “quadratic” column of the character table. For 

instance, the d  orbital has representation A2. The orbital d  has as representation theyx x2 − y2  

difference of the x2 and y2 representations, and likewise the action of C2v
 on the 7 f orbitals of 

water correspond to linear combinations of the “cubic” column of the character tables. 

Of course, these are not the only representations that we might come across. In general, 

given a representation inspired by a molecule (say, the representation from degrees of freedom 

of a molecule, where we assign 3 unit vectors to each of the molecules, which gives a 

9-dimensional representation for water) we can of course find its component irreps with Schur’s 

orthogonality formula: 

 



This formula says that, given a starting representation χ and a target irreducible 

representation χirr we can find n the number of copies of the irreducible representation that 

appear in our starting representation, by evaluating that sum over the elements of the group. Of 

course, since we’re working with real numbers (and therefore the field of complex numbers), we 

can use that  

 

and the fact that we’re working exclusively with the reals to simplify the orthogonality formula to 

 

giving us a relatively simple formula to decompose any representation of a point group (once we 

have its character table, of course). 

This approach does elide over some issues, the most blatant being an assumption that 

all our representations are real. [P15] In fact, even relatively simple groups like C3 (the cyclic 

group on 3 elements, in Schoenflies notation) has as character table the trivial representation 

and then two complex representations. Since we are working with structures grounded in real 

space, it is common to simply use the real representations, yielding 

C3 E C3 (C3)
2  C3 E C3 (C3)

2 

A 1 1 1 or A 1 1 1 

E 1 
1 

ε 
ε2 

ε2 
ε 

 E 2 -1 -1 

Character tables for C3 (reproduced from [Gel]) 

where . To be clear, C3 in the above tables is overloaded as both the cyclic group onε = e2πi/3  

three elements, as well as a generator for that group, and E is both a character (the first column 

and the third row) as well as the identity element (in the second column of the first row). The 



character A is the identity character, and E is a 2-dimensional real character, since we’re 

primarily concerned with real representations. When looking for irreducible components of 

characters on a character with complex irreps, we can use the simplified formula with the 

second representation in the second table, and instead divide by 2. 
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