
HILBERT’S 17TH PROBLEM

STEVEN CREECH

Abstract. Hilbert’s 17th problem asks if every f P Rrx1, x2, ..., xns that is a positive semi-
definite (PSD) can be written as a sum of squares of rational functions. In this paper, we
take a look at some of the tools developed to answer this question. In particular, we examine
the deep connection between orders and being positive semi-definite. We finish by providing
a proof due to Emil Artin [Art27].

1. Introduction

In 1900, David Hilbert created a list of 23 problems to inspire mathematical work for the
next century [Hil02]. His 17th problem asked if fpxq P Rrx1, .., xns is a positive semi-definite
polynomial, then fpxq is sum of square in Rpx1, .., xnq. In this section, we shall give the
motivation behind this problem. First, we shall show that the converse of Hilbert’s 17th
problem is quite natural that is if f P Rrx1, ..., xns can be written as a sum of squares,
then f is PSD. Recall that fpxq P Rrx1, ..., xns is said to be positive semi-definite if for all
c1, .., cn P R, we have that fpc1, .., cnq ě 0

Lemma 1.1. If f P Rrx1, .., xns is a sum of squares, then f is PSD.

Proof. Let us write f “
řn

i“1pgiq
2 where gi P Rrx1, .., xns. Now for any c1, ..., cn P R, we have

that pgipc1, ..., cnqq
2 ě 0; hence, fpc1, ..., cnq “

řn
i“1pgipc1, ..., cnqq

2 ě 0. �

It is not too hard to extend the above proof to the case where f is a sum of squares of
rational functions. However, one might wonder why we need to extend to sums of squares
of rational functions as compared to that of the polynomial ring. As it is true in the single
variable case, we can take the sum of squares to just be sums of squares of polynomials rather
than rational functions. However, David Hilbert showed in [H`93] that for n ě 2 that there
are PSD polynomials which cannot be written as a sum of squares. However, Hilbert did
not have an explicit example. It wasn’t until 1965 when Motzkin came up with an explicit
example of a polynomial which cannot be written as a sum of squares [Mot67].

Example 1.2. Consider the Motzkin polynomial Mpx, yq “ 1`x2y4`x4y2´3x2y2 P Rrx, ys,
a quick exercise in calculus shows that M has a minimum value of 0 obtained at p˘1,˘1q.
Using Newton polytopes, one can show that if the Motzkin polynomial is a sum of squares,
then it has to be a sum of square terms of the form pax2y ` bxy2 ` cxy ` dq2. However, no
such polynomial will have a negative x2y2 coefficient. Thus, the Motzkin polynomial is not
a sum of squares.

The remainder of the paper will be organized as follows. In section 2, we shall introduce
the concept of preorders and orders and describe their relation to sums of squares via the
Artin-Schreier Theorem. In section 3, we prove a theorem due to Artin which reduces
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Hilbert’s problem to a problem about orderings. In section 4, we shall introduce the concept
of real closures. In section 5, we prove Hilbert’s 17th problem.

2. Orderings

We shall begin this section with some definitions and notion. Firstly, we shall use K
to denote a field. Furthermore, for a commutative ring R we shall let

ř

R2 “ tx P R :
x is a sum of squares in Ru and p

ř

R2qˆ “
ř

R2zt0u. In particular, we are interested in
formally real fields which are fields in which ´1 cannot be written as a sum of squares that
is ´1 R

ř

K2. One easily makes the following observations
ř

R2 is closed under addition and
multiplication, K is formally real if and only if ´1 R

ř

K2. We now will define a preordering
of a commutative ring R and we shall see that it has a connection with

ř

R2. However, we
shall primarily be interested in the case when R is a field.

Definition 2.1. A subset P of a R is called a preorder of R if:

P ` P Ď P, P ¨ P Ď P, ΣR2
Ď P, ´1 R P

We call a preordering P an order of R if in addition for x ‰ 0 we have that:

x P P or ´ x P P

this is equivalent to having

P Y´P “ R, P X´P “ t0u

We note that by definition we have that either ´1 P
ř

R2 or
ř

R2 is a preorder of R. The
notion of order should be analogous to our preperceived notion of the total order ď on R.
In general for an order P we shall write that a ďP b whenever b´a P P (we may omit the P
if the order is understood). We note that this gives a total order on R which is compatible
with the operations of the ring. For an example of an ordering see 2.2 and 2.3 where we also
show how one can construct a new ordering from a previous ordering.

Example 2.2. Let K “ Qp
?

2q. Thinking of K as a subset of R, we have that the natural
order (ď) on R restricted to K gives an order on K. We shall construct a new order (ĺ)
as follows for a ` b

?
2 ĺ c ` d

?
2 if and only if a ´ b

?
2 ď c ´ d

?
2. We note that ĺ is an

order as φ : K Ñ K given by a ` b
?

2 ÞÑ a ´ b
?

2 is an automorphism. Thus, as sums and
products are preserved this will be a new order. We can generalize this construction given
any ordered field pK,ďq and an automorphism φ, we can construct a new ordering pK,ĺq
in the analogous fashion.

Example 2.3. Consider Rpxq the rational functions in one-variable, we can define

P`8 “ tall polynomials with positive leading coefficientsu Y t0u

on Rrxs. In this order we have declare that c ă x for every c P R; thus, this is the order

where tk ą tl for k ą l. We can then extend this to Rpxq by having gpxq
hpxq

P P`8 whenever the

quotient of the leading coefficients of g and h is positive.
We now define P´8 have the property that fpxq ąP´8

ą 0 whenever fp´xq ąP`8
0.

Now we note that t ÞÑ t´1 is an automorphism of Rpxq, so we define P`0 to be the
corresponding order. In P`0 we have that 0 ă x, but x ă c for every c P R. We can think of
this as x being infinitesimally close to 0 on the right. We analogously have P´0 which have
x being infinitesimally close to 0 on the left.
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Furthermore, we can analogously define P`c and P´c for any c P R to be the order where
fpxq P P`c if and only if fpx´ cq P P`0 . We can think of this order as simply shifting where
x to be infinitesimally close to c.

Now we now state two lemmas which will allow us to say that formally real fields are
exactly the fields which have an order.

Lemma 2.4. Let P be a preorder of R and let a, b P R. If ab P P , then P ` aP or P ´ bP
is a preorder of R.

Proof. It is easy to check that P ` aP and P ´ bP are closed under addition, multiplication,
and contain

ř

R2. Thus, we need to show that ´1 R P ` aP or ´1 R P ´ bP . Assume for
sake of contradiction that ´1 P P ` aP X P ´ bP , then we can write ´1 “ x` ay “ z ´ bw
for some x, y, z, w P P . Then payqp´bwq “ p´1´ xqp´1´ zq “ 1` x` z ` xz. Subtracting
1 and adding abwy to both sides yields ´1 “ x ` z ` xz ` pabqyw. As every summand on
the righthand side in P , we have that ´1 P P , but this contradicts the fact that P is a
preorder. �

Lemma 2.5. Let P be a maximal preorder of R. Then P Y´P “ R and P X´P “ p is a
prime ideal of R. If R “ K is a field, then p “ 0 and P is an order of K.

We shall omit the proof of this lemma as it requires some case analysis; however, the idea
of the proof is to let a “ b and apply Lemma 2.4. For details of proof see Lemma 1.5 of
[Pfi95]. A nice corollary of the lemma is Artin-Schriere theorem:

Theorem 2.6. (Artin-Schreier) K is a formally real field if and only if K has an order P

Proof. For the forward direction, if K is formally real, we know that
ř

K2 is a preorder
on K. Thus, lemma 2.5 tells us that a maximal preorder is an order (note that such a
maximal preorder exists by Zorn’s Lemma). The backwards direction follows trivially from
the definition of order. �

Remark 2.7. Thus, the study of formally real fields is equivalent to the study of ordered
fields. However, ordered fields must have characteristic 0; thus, all formally real fields must
contain a copy of Q. Furthermore, as we can construct an order on Rpx1, .., xnq in an
analogous way to that of Example 2.3 by inducting on the number of variables and noting
that Rpx1, .., xnq – Rpx1, ..., xn´1qpxnq. Thus, we have that Rpx1, .., xnq is formally real.

3. Artin’s Reduction

The goal of this section is to prove the following theorem due to Emil Artin:

Theorem 3.1. (Artin)
If K is a formally real field, then K has an ordering and

ÿ

K2
“

č

P ordering of K

P

This result relies on the subsequent two lemmas.

Lemma 3.2. Say P is a preorder of K, for a P K, define P ras :“ P`aP . P ras is a preorder
if and only if ´a R P .
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Proof. ´1 P P ras if and only if ´1 “ x ` ay for some x, y P P . That is ´1 P P ras if
and only if ´ay “ 1 ` x; thus, ´a “ y´1p1 ` xq P P . We note that this is in P as
y´1p1` xq “ py´1q2pyp1` xqq, and as py´1q2, yp1` xq P P .

Thus, we see the forward direction via the contrapositive as ´a P P if and only if ´1 P
P ras; however, ´1 cannot be in a preorder, so P ras is not a preorder.

We then get the backwards direction via the contrapositive, and noting that ´1 R P ras if
and only if ´a R P . Furthermore, it is easy to see that P ras is closed under addition and
multiplication and contains

ř

K2. �

Lemma 3.3. If T is a preorder of K, then:

T “
č

tP : P is an order on K and T Ď P u

Proof. We note that Ď inclusion is trivial as each set on the right hand side contains T by
definition. Thus, let us show the inclusion Ě to do this we shall show that for a R T , then
a R XP that is there is some order P which contains T such that a R P . Assume that a R P ,
then by Lemma 3.3 we have that T r´as is a preorder with ´a P T r´as; hence, we know by
Zorn’s Lemma that T r´as is contained in some maximal preorder P , and by Lemma 2.5 the
maximal preorder P is an order. Thus, P is an order with ´a P P , so a R P . �

Remark 3.4. We note that
ř

K2 is the minimal preorder that is every order must contain
ř

K2, so the above lemma implies Theorem 3.1. We now have a really nice reduction of
Hilbert’s 17th problem. Recall that given f P Rrx1, .., xns which is PSD, we want to prove
that f “

řn
i“1 g

2
i for gi P Rpx1, ..., xnq that is we want f P

ř

Rpx1, .., xnq2. Thus, given a
PSD polynomial if we can show that f ěP 0 for all orderings P on Rpx1, ..., xnq, then

f P
č

P ordering of Rpx1, ..., xnq

P “
ÿ

Rpx1, ..., xnq2

4. Real Closure

We now will introduce the concept of real closed fields. A real closed field K is a formally
real field that has no algebraic extension that is formally real. Our goal will be to show that
real closed fields have the nice property that there exists a single order on a real closed field
namely K2 the set of squares is the unique order. We start out by proving a lemma about
quadratic extensions of ordered fields.

Lemma 4.1. Let pK,P q be an ordered field, let K 1 “ Kp
?
αq for some α P K, then there is

an order P 1 on K 1 whose restriction to K is P if and only if α P P .

Proof. The forward direction is easy as α is a square in K 1; hence, for every order P 1 on K 1,
α P P 1. Thus, as P 1 restricts to P on K, and α P K, we have that α P P .

Now for the backwards direction, let us assume α P P and α R K2 as the case were α is a
square is trivial. Now we note that the set of sums of the form

ř

cix
2
i is a preorder where

ci P P and xi P K
1. This preorder contains P as a set, and can thus be extended to an

order. �

This lemma allows us to show that there is a unique ordering on a real closed field K.

Theorem 4.2. If K is a real closed field, then K2 is the only order of K.
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Proof. Let P be an order of K, then for α P P , by Lemma 4.1 we have that Kp
?
αq has an

order P 1 that extends P . However, as K is real closed, we know that there is no ordered
extension. Hence, we have that Kp

?
αq “ K and P 1 “ P . Namely α P K2; thus, we have

that K2 “ P is the unique order on K. �

Now we shall define the real closure of a formally real field. The concept of the real closure
is analogous to an algebraic closure in that it shall be the largest algebraic extension which
is an ordered field. Artin actually used the concept of the real closure to give a generalized
proof of Hilbert’s 17th problem dealing with polynomials over real closed fields rather than
just R (which is real closed).

Definition 4.3. Let pK,P q be an ordered field. A real closed field R is called the real-closure
of pK,P q if R is an algebraic extension of K and R2 XK “ P that is the restriction of the
squares of R (which is the only order on R) to K is exactly the order P .

Theorem 4.4. Every ordered field has a real closure. Furthermore, two real closures are
unique up to isomorphism.

Proof. We omit the proof; however, a proof can be found in [San91]. �

5. Solution to Hilbert’s 17th Problem

We are finally ready to prove Hilbert’s 17th problem. Recall we have reduced the problem
to showing that if f P Rrx1, ..., xns is PSD, then we want to show that f ěP 0 for every order
P on Rpx1, .., xnq. We shall first state the Artin-Lang Homomorphism Theorem which shall
be used in the proof. We shall omit the proof of this theorem, but a proof can be found in
[Lor97].

Theorem 5.1. Artin-Lang Homomorphism Theorem Let K be a real closed field, let A “
Krx1, ..., xns be a finitely generated K-algebra which has no zero divisors (the xis may satisfy
some relations as in the R-algebra in the proof of Hilbert’s 17 problem) such that the quotient
field Kpx1, ..., xnq is formally real. Then there exists a K-algebra homomorphism

φ : Krx1, ..., xns Ñ K

We now state Artin’s generalization of Hilbert’s 17th problem in terms of real closures.
We will only prove the case for R, the general case can be found in [Pfi95].

Theorem 5.2. Let pK0, P0 “ K2
0q be a real closed field. Let K “ K0px1, ..., xnq be the

rational function field in n variables over K0 and let f P K be a rational function such that
fpaq “ fpa1, ..., anq ě 0 P K0 for all a “ pa1, ..., anq P K

n
0 where fpaq is defined. Then there

exists finitely many pi P P0 Ď K0 and fi P K such that f “
ř

pif
2
i . Since P0 “

ř

K2
0 is the

only order of K0, then the pi are sums of squares in K0 and f is a sum of squares in K.

We shall simply present the proof when K0 “ R, and P0 “ Rě0 as this will simplify some
of the steps. We note that as R is a real closed field, we have that Rě0 is the unique order
on R.

Proof. First let us define T “ t
ř

pif
2
i : pi P Rě0, fi P Rpx1, .., xnqu. Now T is a preorder,

our goal is to show that for a PSD polynomial f , we have that f P T . We note by remark
3.4 that showing f P T is analogous to showing f P P for every order P on Rpx1, .., xnq such
that T Ď P .
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Let f P Rpx1, ..., xnq be a PSD rational function. Now let us assume for sake of contradic-
tion that there exists an order P on Rpx1, ..., xnq such that T Ď P such that f R P . Thus,
we have that ´f P P . Now let R be a real closure of pRpx1, ..., xnq, P q. Then we have that
´f is a square in R, so ´f “ ω2 for some ω P R.

Now fix f “ g
h

for g, h P Rrx1, ..., xns as a quotient of two polynomials. Now for the

R-algebra, A “ Rrx1, ..., xn, 1g ,
1
h
, ω, 1

ω
s Ď R we can apply the Artin-Lang Homomorphism

Theorem to give us a homomorphism φ : A Ñ R. Now denote ai “ φpxiq. Thus, we have
that:

φpfq “ φp
g

h
q “

gpa1, ..., anq

hpa1, ..., anq
“ fpa1, ..., anq

We have that this is well-defined as φp 1
h
q is defined, then φphq ‰ 0, as φp 1

h
qφphq “ φp1q “ 1.

Similarly, we have that φpωq ‰ 0 and φpgq ‰ 0 as we have that 1
ω
, 1
g
P A. Hence, we can say

that φpfq ‰ 0. Now, we use the equation that ´f “ ω2. Then:

fpa1, ..., anq “ φpfq “ ´φpωq2 ă 0

However, this contradicts the fact that f is PSD. Thus, no order P of Rpx1, .., xnq exists
were f R P , so as f P XP , f P T which consists of elements which are sums of squares. �

Remark 5.3. The proof we gave worked due to the fact that R is a real closed field. We note
that for any real closed field K, the PSD rational functions with coefficients in K can be
written as a sum of squares using the exact same proof.
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