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Abstract. In 2013, Thomas Church and Benson Farb published an extensive survey on
homological and representation stability aimed at mathematicians specializing in both ge-
ometry and algebra. Our goal today is to distill the idea of representation stability, working
toward understanding modern results. We will begin by introducing the concept of stability
in an intuitive manner, continue by describing the braid group, and finally introduce a result
of Church and Farb’s on the representation stability of the cohomology of the pure braid
group. After the presentation, if any new concepts pique one’s interest or are unclear, there
are more sections with further discussion on several subject matters.

1. Guide for the Presentation

In this section, we provide an outline for the presentation, as well as some definitions (for
your reference during the presentation) and further readings in case you are interested in
learning more. Key words and phrases are colored to help find any supplementary informa-
tion quickly during the lecture.

1.1. Stability and Representations.

Definition 1 (Representation Stability). Let (Gn, Vn, φn) be a sequence of a triples of groups
Gn with Gn ≤ Gn+1 for all n, representations Vn, and linear functions φn : Vn → Vn+1 such
that for all g ∈ Gn, the following diagram commutes:

Vn Vn+1

Vn Vn+1

φn

ρn,g ρn+1,g

φn

Note that since g ∈ Gn, we can consider the image of g under inclusion into Gn+1 to make
the right down arrow make sense.

Henceforth, we will assume that Gn = Sn.
Then, this sequence of representations is stable if:

(1) each φn is injective,
(2) the Gn+1−orbit 1 of φn(Vn). spans Vn+1, and
(3) if the decomposition into irreducible representations (indexed by padded partitions,

defined on the next page) is:

Vn =
⊕
λ

cn,λV (λ),
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1That is, the image of ρn+1,g for all g ∈ Gn+1
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then for any fixed λ, cn,λ is constant for large enough n.

This sequence is uniformly stable if (1) and (2) are satisfied, and

(3’) if the decomposition into irreducible representations (indexed by padded partitions)
is:

Vn =
⊕
λ

cn,λV (λ),

then there exists N such that for all m,n ≥ N, cn,λ = cm,λ for all λ.

In the presentation itself, we will be more interested in uniform stability and ignore regular
stability.

The definition of representation stability uses the idea of a padded partition to generalize
a partition λ to apply for any n. Now we will intuitively describe a padded partition.

We can describe a partition of an integer n using a Young tableau; call its shape λ. Then,
if we are given n, we can recover the entirety of λ if we are given all but the first row. Thus,
if we vary n, λ can be seen as a partition of any n (large enough) by adjusting the length
of the top row. We denote the irreducible representation associated with padded partition
λ by V (λ), noting that V (λ) can be an irreducible representation for almost any n.

Example 2. Consider n = 6. Then, one partition of n is λ = (3, 2, 1). To generalize λ to
be a partition of some arbitrary n, we remove the first entry (or row in a Young tableau) to
get (−, 2, 1). An example of this padded partition can be found in Figure 1.

Figure 1. In (a), we see the entirety of λ, a partition of n = 6. In (b), we see
a padded partition λ, which we can generalize to be a partition of any n ≥ 5
by adjusting the number of boxes in the top row.

Also, we note that the concepts of “stable” and “uniformly stable” mimic the ideas of
uniform continuity versus continuity.

1.2. An Example. Consider the sequence of triples (Sn,Rn, in : Rn → Rn+1), where in is
inclusion. We will drop the n when it is clear what n is. We claim that this sequence of
Sn−representations that arises from the permutation action is uniformly stable.

First, Xn ≤ Sn+1 for all n. Second, the diagram in the definition of representation stability
commutes (which we can see since the image of Rn in Rn+1 looks the same as Rn in a very
clear way).

Furthermore, each inclusion i is injective (fulfilling requirement (1)) and the Sn+1−orbit
of i(Rn spans Rn+1 since the image of a single basis element in Rn is all the basis elements
of Rn+1, satisfying (2).
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Requirement (3) is a little more involved. The permutation representation decomposes as
the direct sum of the trivial representation (which comes from the partition (n)) and the
standard representation (which arises from the partition (n − 1, 1)). This means that the
padded partitions for these are ∅ and (1), respectively. Since precisely one copy of V (∅) and
V ((1)) exist in each representation, we have that (3) is satisfied.

Therefore, (Sn,Rn, in) is uniformly stable.

1.3. Topology. Topologists are interested in invariants of spaces – quantities or descriptors
that stay constant when a space undergoes a homeomorphism. Many of these invariants
are algebraic, involving concepts like homotopy groups, homology, or cohomology. In the
presentation, we focus on cohomology (without defining it completely).

Remark 3. Normally, we think of cohomology as pertaining to some space X, but in the
presentation, I talk about the cohomology of the braid group. This is because to each group,
we can assign a unique space (up to homotopy2). More details can be found in Section 2,
and we need not concern ourselves with the details now.

We now introduce the braid group (on n strands), denoted Bn, and the pure braid group
(on n strands), denoted Pn or PBn. A more rigorous definition can be found in Section 3.

There is an action of Sn on Pn of renaming/permuting the marked points. This action
extends to an Sn-action on Hom(Pn,Q), or the group of homomorphisms from the pure
braid group on n strands to the rationals. We define the action as such: let σ ∈ Sn, h ∈
Hom(Pn,Q), and b ∈ Pn. Then,

σ · h(b) := h(σ−1 · b).

It so happens that the set of homomorphisms is not only a group; it is a vector space with
coefficients in Q.

Therefore, we have an Sn−representation induced by the action of Sn on Hom(Pn,Q).
This representation is uniformly stable!

To generalize this, let H1(Pn;Q) = Hom(Pn,Q). This is the first cohomology 3 of Pn;
we can also define a second cohomology, third cohomology, etc., and each of these is also a
vector space on which Sn acts. Then, we have the following thoerem of Church and Farb [1]:

Theorem 4. For a fixed i ≥ 0, the sequence of Sn−representations {H i(Pn;Q)}n is uni-
formly stable, and it stabilizes when n ≥ 4i.

We note that the maps φn arise from algebraic topology as the maps between cohomology
groups.

This result is surprising; it had previously been thought that this sequence is not at all
stable! Furthermore, this result and associated examples were developed with the aid of a
computer program.

Since the publication of this theorem, many people have built on Church and Farb’s work.
Representation stability has recently been applied to nested graphs with Sn−actions [6],
homological stability of moduli spaces [5], and many, many other subjects.

2Intuitively, homotopy is continuous deformation of a space.
3Generally, cohomology is a way to assign groups to spaces in such a way that we encode properties of

a space. The cohomology group(s) are groups of homomorphisms from simplices in our space (up to some
equivalences) to Z.
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2. On the equivalence of groups and spaces

We mention earlier that there is some form of equivalence between topological spaces and
groups. More explicitly, this relationship is seen through K(G, n) spaces. Given a group G
and a positive integer n, we can associate a space, X, such that πn(X) = G.

For completeness, we include the definition of the nth homotopy group:

Definition 5 (nth homotopy group). Given a topological space X, the nth homotopy group
of X is:

πn(X, x0) = {basepoint preserving maps φ : (Sn, s0)→ (X, x0) | φ(s0) = x0}/{homotopy}

The homotopy group we are most interested in is π1(X, x0), otherwise known as the fun-
damental group, which is the space of homotopy equivalence classes of closed loops in
X.

Example 6. Let G = Z. Then, K(Z, 1) space is the unit circle S1, since π1(S
1) = Z.

Why is π1(S
1, x0) ∼= Z? The formal proof is long, but the idea isn’t too difficult. Loops in

S1 are just circles wrapping around the original circle itself – we can only wrap an integral
number of times, and in either direction (thus covering both the negative integers and the
positive integers).

3. More on braid groups

We start by defining the braid group.

Braid Group. [3] Let p1, p2, . . . , pn be n marked points in C. A braid is a collection of n
paths fi : [0, 1] → C × [0, 1], 1 ≤ i ≤ n, which we call strands, and a permutation σ of [n].
The fi must satisfy the following properties:

• All strands are disjoint; i.e., the images of all fi are disjoint
• fi(0) = pi
• fi(1) = pσ(i), and
• fi(t) ∈ C× t.

This is not a very intuitive definition of a relatively familiar concept. Two helpful ways
to think of braids are:

(1) Given a cylinder, we mark n points on the top and the same n points on the bottom.
Then, we form the strands as paths in the cylinder starting at one of the points on the
top of the cylinder and going down to a marked point on the bottom of the cylinder
(without doubling back and without intersecting).

(2) We can visualize an element of Sn, the symmetric group on n elements, as a diagram
with the set of elements listed twice (one on the left and one on the right) and the
permutation represented as lines going across. Then, at each crossing, we designate
one of the lines to be on top and the other on the bottom. This is a good intuitive
understanding of what a braid is. An example of a braid can be found in Figure 2.

The braid group on n strands, denoted Bn, is the set of n−stranded braids with the
operation of concatenation.
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Figure 2. A braid with n = 3.

Figure 3. The effect of homomorphism ϕ on the braid from Figure 2.

3.1. Pure braid group. Consider the map ϕ taking the braid group Bn to Sn by forgetting
the over/under strands in the image, as in Figure 3. It is not hard to see that this map is
actually a surjective homomorphism, and its kernel is all braids taking the marked point pi
to itself.

We denote the pure braid group on n strands by Pn or PBn. An example of a pure braid
on 3 strands can be seen in Figure 4.

Figure 4. A pure braid on 3 strands.

The pure braid group is important because it is the fundamental group of another space,
called the configuration space, which is Xn := {(z1, . . . , zn) ∈ Cn|zi 6= zj for all i 6= j}. Many
people study configuration spaces of not only Cn, but also of other manifolds, and the braid
group is key to understanding how those spaces work.
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