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Abstract. This is an introduction to representation theory of Lie algebras

(with a focus on semisimple Lie algebras), together with a short survey on

softwares developed for computations in the theory.
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1. Introduction

The theory of Lie algebras and their representations is not only one interesting

topic in the mathematical field of representation theory, but also one that has grow-

ing applications in various branches of theoretical physics, such as molecular physics

and particle physics. Moreover, in modern development of the theory, Lie-algebra

related computations and models need to be implemented or built on the computer.

Our purpose here is to introduce some major programs and software packages that

can be applied to facilitate these computations, as well as the mathematical theory

itself.

The paper is organized as follows: Section 2 gives an introduction to the represen-

tation theory of Lie algebras, and in particular, the representations of semisimple

Lie algebras. (This is a mature theory and usually takes hundreds of pages to

cover its foundation. Interested readers are referred to references [3, 4].) Section 3
1
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presents a short survey on four popular software applications that facilitate com-

putations in Lie algebras and their representations. We shall mainly focus on the

mathematical parts; features about user experience (namely, how easy and flexible

a program is to use), such as supplies of a type checking system, an on-line help

system, or a memory management system, are not within the scope of the survey.

In Section 4, we discuss the limitations of our work and register our thoughts about

some possible future work.

2. Representation Theory of Lie Algebras

In this section we introduce some concepts in the representation theory of Lie

algebras, with a focus on finite-dimensional complex semisimple Lie algebras. Un-

less otherwise specified, the following definitions and results (lemmas, propositions,

etc.) are based on the books Fulton-Harris [3] and Humphreys [4].

2.1. Preliminaries. A (complex) Lie algebra is a (finite-dimensional) complex vec-

tor space g with a bilinear map

[ · , · ] : g× g −→ g

(usually called Lie bracket), satisfying

(1) skew-symmetry: [x, y] = −[y, x], and

(2) Jacobi identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

for all x, y, z ∈ g. A subspace h of g is called a subalgebra if [x, y] ∈ h for all x, y ∈ h.

A Lie algebra g is said to be nilpotent if for some n ∈ N one has

[x1, [x2, [· · · , [xn, y] · · · ]]] = 0

holds for all x1, x2, · · · , xn, y ∈ g.

Example 2.1 (Abelian Lie algebras). If the Lie bracket [ · , · ] of a Lie algebra is

trivial (i.e., [x, y] = 0 for all x, y), then we say the Lie algebra is abelian. It is clear

that any abelian Lie algebra is nilpotent.

Example 2.2 (gl(V )). Given a finite-dimensional complex vector space V , gl(V )

is a Lie algebra, where the underlying set is End(V ) (i.e., the set of endomorphisms

of V ) and the Lie bracket End(V ) × End(V ) → End(V ) is defined by (α,β) →
α ◦ β − β ◦ α.

A Lie algebra homomorphisms is a linear map ϕ : g → h that is compatible with

the respective Lie brackets, i.e., for all x, y ∈ g we have

ϕ([x, y]g) = [ϕ(x),ϕ(y)]h.

Definition 2.3 (Semisimple Lie algebras). A Lie algebra is said to be simple if

it contains no nonzero proper ideals. A semisimple Lie algebra is a direct sum of

simple Lie algebras.

Definition 2.4 (Representations of Lie algebras). A representation of a Lie algebra

g on a complex vector space V is a homomorphism of Lie algebras g → gl(V ).
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The following definitions are similar to those in the representation theory of

groups: Given a Lie algebra representation ρ : g → gl(V ) and a subspace W ⊂ V ,

we say (ρ,W ) is a sub-representation of (ρ, V ) if ρ(x)(W ) ⊂ W for all x ∈ g. A

representation is irreducible if it contains no non-trivial sub-representations. A

homomorphism of Lie algebra representations ρV : g → gl(V ) and ρW : g → gl(W )

is a linear map ϕ : V → W such that the following diagram commutes for all x ∈ g:

V V

W W

ρV (x)

ϕ ϕ

ρW (x)

Example 2.5 (Adjoint representations). The adjoint representation of a Lie alge-

bra g is a representation of g on itself defined by

ad : g −→ gl(g)

x −→ (y → [x, y]).

Definition 2.6 (Killing forms). Let g be a finite-dimensional Lie algebra. For each

x ∈ g, define adx : g → g by

adx(y) := [x, y] for all y ∈ g.

The killing form on g is a symmetric bilinear form κ on g defined by

κ(x, y) := trace(adx ◦ ady).

Now we introduce the notion of Weyl groups. Let E be a finite-dimensional

Euclidean vector space endowed with a positive definite symmetric bilinear form

(·, ·). A finite set Φ of E of non-zero vectors is called a root system in E if it satisfy

the following conditions:

(1) Φ spans E.

(2) For any α ∈ Φ, the only scalar multiples of α in Φ are ±α.

(3) For any α,β ∈ Φ , the element σα(β) := β − 2 (β,α)
(α,α)α stays in Φ.

(4) For any α,β ∈ Φ, one has 〈β,α〉 := 2 (β,α)
(α,α) ∈ Z.

Remark 1. For any α ∈ Φ, σα (as defined in condition (3)) is a reflection through

the hyperplane Pα := {β ∈ E | (β,α) = 0}.

Definition 2.7 (Weyl groups). A Weyl group of a root system Φ in E is the

subgroup of GL(E) generated by {σα | α ∈ Φ}.

Remark 2. Given a semisimple Lie algebra g and a Cartan subalgebra h, the Weyl

group of g is the Weyl group of the root system (h∗)ad in h∗.

2.2. An example: sl2(C). Now we discuss the Lie algebra sl2(C) := {A ∈ C2×2 |
tr(A) = 0}, which is equipped with Lie bracket [A,B] := AB − BA. Consider the

following matrices, which form a basis of sl2(C) as a C vector space:

H :=


1 0

0 −1


, X :=


0 1

0 0


, Y :=


0 0

1 0


.
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Given an irreducible representation (ρ, V ) of sl2(C), the action of H on V is

diagonalizable, and thus V can be decomposed as

V =


λ∈Λ

Vλ,

where Vλ’s are the eigenspaces. Then for any λ ∈ Λ and v ∈ Vλ, one has

H(X(v)) = [H,X](v) +X(H(v)) = 2X(v) + λX(v) = (λ+ 2)X(v),

and also,

H(Y (v)) = [H,Y ](v) + Y (H(v)) = −2Y (v) + λY (v) = (λ− 2)Y (v),

so X(v) ∈ Vλ+2 and Y (v) ∈ Vλ−2. It follows that the direct sum of Vγ ’s where

γ ∈ Λ, γ ≡ λ (mod 2) is a subrepresentation of V . The irreducibility of V implies

that Λ = {α+ 2k}nk=0 for some α ∈ Λ and n ∈ N. Therefore, one has

V =


0kn

Vα+2k.

2.3. Cartan subalgebras and weight spaces. In the case of sl2(C), the action

of the matrix H on the representations plays a key role in analyzing its irreducible

representations. This does not directly apply to general semisimple Lie algebras,

but the notion of “maximal” abelian subalgebras, namely Cartan subalgebras, can

help in a similar way.

Definition 2.8 (Cartan subalgebras). A Cartan subalgebra h of a Lie algebra g is

a nilpotent subalgebra satisfying that

[x, y] ∈ h ∀x ∈ h =⇒ y ∈ h.

Lemma 2.9. Every semisimple Lie algebra has a Cartan subalgebra.

Definition 2.10 (Weights and weight spaces). Let g be a semisimple Lie algebra,

and let h be a Cartan subalgebra of g. A weight of a representation ρ : g → gl(V )

of g is a linear functional λ ∈ h∗ satisfying that

ρ(x)(v) = λ(x)v, ∀x ∈ h

for some v ∈ V − {0}. The set of all the possible v’s with the zero vector included

is called the weight space associated to λ and is denoted by Vλ. The multiplicity of

λ in ρ is defined as the dimension of Vλ.

If ρ : g → gl(V ) is the adjoint representation of g, then a non-zero weight λ of ρ

is called a root of the Lie algebra g, and the associated weight space is called the

root space of λ.

Theorem 2.11 (Cartan decomposition). Let g be a semisimple Lie algebra, and

let h be a Cartan subalgebra of g. Then g can be decomposed as

g = h⊕


λ∈(h∗)ad

gλ,

where (h∗)ad denotes the set of roots of g corresponding to h, and gλ denotes the

root space of λ.
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Theorem 2.12 (Weight space decomposition). Let g be a semisimple Lie algebra,

and let h be a Cartan subalgebra of g. Given a representation ρ : g → gl(V ), V can

be decomposed as

V =


λ∈(h∗)ρ

Vλ,

where (h∗)ρ denotes the set of the weights of ρ corresponding to h.

2.4. A procedure for describing representations. Here we describe the out-

line of a procedure for classifying irreducible, finite-dimensional representations of

semisimple Lie algebras. Some relevant facts together with a more detailed algo-

rithmic procedure can be found in Lecture 14 of [3].

First of all, we need to verify that the Lie algebra being analyzed, say g, is

semisimple. Let V be any representation of g. The subsequent steps are listed as

follows:

(1) Analogous to finding the matrix H in the case of sl2(C), find an abelian

subalgebra h of g whose action on the representations of g is diagonal. (In

fact, it suffices to look for an abelian subalgebra that acts diagonally on one

faithful representation; see Theorem 9.20 in [3].) Since a larger abelian sub-

algebra would provide more information on the structure of representations,

we consider the “maximal” case, namely a Cartan subalgebra.

(2) Decompose g with respect to the abelian, diagonalizable subalgebra h found

in step (1).

(3) Find the copies of subalgebras sl2(C) (i.e., the subalgebras which are iso-

morphic to sl2(C)) contained in g.

(4) For each copy, pick a basis H,X, Y .

(5) Apply the integrality of the eigenvalues of the H’s and form the weight

lattice of g.

(6) Apply the semmetry of the eigenvalues of the H’s and form the Weyl group

of g. Break up the eigenspace decomposition of V .

(7) Introduce the killing form on g.

(8) Choose a real linear functional in h∗ that is irrational on the weight lattice.

(9) Analyze.

A concrete example applying the above procedure to the representations of sl3(C)
can be found in Lectures 12-13 of [3].

Remark 3. If the Lie algebra being analyzed is not semisimple, the above procedure

still give information about the irreducible representations: we can use it to the

semisimple part of the given Lie algebra. The theoretical support can be found in

Lecture 9 of [3].

3. Programs and Software Packages

In this section we focus on analyzing four popular programs (or software pack-

ages): LiE [8], SimpLie [6], Affine.m [5], and LieART [1]. We will also discuss

their limitations (if any) and in what manners problems can be solved (if the com-

putational algorithm is inspiring or interesting). The reader who is interested in
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designing similar programs or needs to frequently apply functions for computations

related to these topics may also find these two packages helpful: [2] and [7].

The programs are introduced in chronological order (according to the time they

were published).

3.1. Basic computational questions. First, we discuss some basic computa-

tional questions encountered in Lie algebras and their representations that can be

handled computationally. To begin with, some mathematical objects, such as the

decomposition polynomial of an adjoint representation, the dimension of a repre-

sentation, and the product of irreducible representations, can be directly returned

with appropriate inputs into some built-in functions. More importantly, the main

computational questions (as mentioned in [5]) are

(1) Construction of a root system which determines the properties of Lie alge-

bra including its commutation relations.

(2) Weyl group traversal which is important due to Weyl symmetry of root

system and characters of representations.

(3) Calculation of weight multiplicities, branching and fusion coefficients, which

are essential for construction and study of representations.

3.2. LiE. [8, 9] LiE is a computer algebra package for computations with Lie

groups, Lie algebras, and their representations. There are about one-hundred

mathematical functions built into the library of LiE. These functions implement

operations related to Lie groups and algebras, the structure of their Weyl groups

and root systems, symmetric groups, and representations. Most of the built-in

functions take a group as parameter. Standard classification of simple Lie groups

is pre-defined in the package, and accordingly, semisimple groups are formed by

concatenation and reductive groups are formed by adding a complex torus.

It is important to note that LiE is mainly designed for semisimple Lie groups

and algebras. It works with reductive groups, and only simply connected simple

groups are given names. This in general does not cause a limitation. Readers who

are concerned about the class of groups and need more information to compare

with their actual needs can see pages 3 and 37 in [9].

One interesting feature of LiE is that it has its own programming language, so

in addition to calling the built-in operations and functions, users can define new

algorithms. In other words, the library of functions is not fixed or exclusive to its

developers; it can be extended or customized by its users.

LiE can also do ordinary arithmetic and accepts large magnitude of numbers (so

there is no bound in practical applications), but only with integral numbers, ma-

trices (or vectors) with integral entries, and polynomials with integral coefficients.

LiE is not a symbolic package, in the sense that formal symbols are not defined.

Although the data types is few, they are stored efficiently.

LiE is written in C and is available on many platforms (e.g., systems running

UNIX or with a C-compiler).
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3.3. SimpLie. [6] There are two specialties of SimpLie: one is that it handles prob-

lems arising in infinite-dimensional Lie algebras (later we will see that Affine.m is

designed for finite-dimensional and affine Lie algebras), and secondly, it “visual-

izes” Lie algebras by presenting screenshots of Coxeter plane projection or Hasse

diagrams of the root system of the algebra.

Other major features of SimpLie consist of calculation of Lie algebra properties,

such as dimension, rank, and roots (based on Dynkin diagrams), calculation of

highest weight representations, and level decompositions of Lie algebras.

SimpLie is written in Java, and is also available on different types of computers

(or platforms).

3.4. Affine.m. [5] Affine.m is a Mathematica package. As we mentioned above,

it is developed for handling problems frequently encountered in representation the-

ory of affine and finite-dimensional Lie algebras. In particular, the developer aimed

to extend the tables of multiplicities of affine Lie algebras and representations. Fur-

thermore, Affine.m has a focus on physical applications, and the problems it deals

with include but not limited to the following [5]:

(1) tensor product decomposition for finite-dimensional Lie algebras,

(2) branching and parabolic Verma modules,

(3) string functions of affine Lie algebras and CFT models, and

(4) branching functions and coset models of conformal field theory.

Now we elaborate a little on the computational algorithms of Affine.m. To begin

with, its algorithms for finite-dimensional Lie algebras were adapted from the struc-

ture of affine Lie algebras. For some computational problems, e.g., construction of

a root system, Affine.m was based on existing well-known algorithms. For the most

computationally intensive problems–calculation of weight multiplicities, branching,

and fusion coefficients–Affine.m analyzed two recurrent relations/algorithms. The

reader who is interested in developing software with the similar aim can see pages

17-20 in [5] for more details.

3.5. LieART. [1] LieART is the most recently published program that we discuss

in this paper. LieART basically covers all the Lie-algebra related computations

that can be achieved by the previous programs, for example, tensor product de-

composition, computations of root systems of Lie algebras, generation of weight

system of an irreducible representation, etc.

Similar to Affine.m, one special property of LieART is that, it has a flavor of

physics, especially particle physics, so physicists who require the use of Lie algebras

and their representations may find these two programs more helpful.

The development of LieART was intended to bring Lie-algebra related software

to the computer-algebra system Mathematica. Moreover, it enriched the tables

of irreducible representations and their invariants.

LieART is a Mathematica application, and it is also cross-platform.
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4. Conclusion

In conclusion, we introduced some basic concepts and notions in Lie algebras and

their representation and analyzed four popular softwares designed for computations

arising in the theory.

There are some limitations of our work. To begin with, the overview of the

theoretical part has been significantly narrowed, and there are a number of results

that we did not get to present/prove in this paper. Also, due to the lack of a

computer at hand during the remote-instruction period, the author was not able to

test any of the programs or software packages discussed above; all of the analyses

presented in Section 3 were based on the examples provided by the developers of

the corresponding softwares.

Future work could further investigate these softwares so that a more complete

survey could be presented. These softwares could also be explored in a way that

Lie algebra representations could be viewed from a programming perspective and

thus to see if some existing theoretical ideas could be improved.

While brief, we hope this small piece of writing encourages the readers to further

explore the applications of Lie algebra representations.
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