
MATH 6122: PROJECT REPORT:
THE FOURIER TRANSFORM ON FINITE GROUPS:
THEORY, COMPUTATION, AND AN APPLICATION

YIAN YAO AND WEIWEI ZHANG

Abstract. We report on the Fourier analysis on finite groups. In the theoretical part, we
start by a brief introduction of the Fourier analysis on the real domain, followed by the
discussion on finite abelian groups. After this, we delve into the Fourier analysis on all
finite groups with the aid of the representation theory. In the computational part, we report
on two fast Fourier transform(FFT) algorithms developed by Cooley-Tukey and Diaconis-

Rockmore, and specifically focus on the Sn groups. Some theoretical results f̂e(yj)s are
provided to speed up the algorithm. Finally, in the applicational part of the report, we
explore the use of Fourier transforms in multi-object tracking problems in machine learning,
where an efficient algorithm for approximately maintaining and updating a distribution over
permutations is provided with the aid of Clausen’s FFT.

keywords: Fourier Transform on Finite Groups, Representation Theory, Cooley-Tukey
fast Fourier Transform, Multi-object Tracking

1. Introduction

The Fourier Transform(FT) is an extremely powerful mathematical tool with large appli-
cations in many areas. The basic idea of FT is decomposing a function into its constituent
frequencies, such functions can be signals, audios or other functions of time, and represent
the function by the linear combination of sine and cosine waves. This idea of moving func-
tion into the frequency domain allows people to filter out certain frequencies for dimension
reduction or noise canceling.

The principle of Fourier analysis is not only applicable when the time domain for the
function is real(i.e. R), but also when the domain is a finite group and the basic idea is
pretty similar. For the finite group case, we will depend on the representation theory to
build a set of suitable basis in the frequency domain.

The Fourier transform on finite groups has applications in object tracking problems in
machine learning, since it allows a faster method to store and update information. Multi-
object trackers can be viewed as a permutation between different tracks and real-world
objects. A classical example is the air traffic control, where the tracks for the aircraft are
often visible on radar, the identity of the aircraft is rarely revealed unless the pilot report by
video. The typical way of such data association problem is using a probability distribution
to represent the possibility of the corresponding objects’ identities. However, maintaining
such distribution can be very costly when the number of objects is large.

This report is organized as follows: In section 2, we discuss the theory of Fourier Trans-
form when the domain is R, finite abelian groups, and finite groups in general. In section
3, we study the Cooley-Tukey fast Fourier Transform and Diaconis-Rockmore fast Fourier

The code in section 3 is available in my github page.

1

https://github.gatech.edu/yyao93/Math6122_Project_code

2 YIAN YAO AND WEIWEI ZHANG

Transform. Moreover, a concrete algorithm is provided when the domain is Sn. In section
4, we explore a target tracking algorithm with the aid of the Fourier Transform.

This report is mainly based on [Dan18](section 2, 3), [KHJ07](section 4).

2. The Theory of Fourier Transform

In this section, we explore the theoretical derivation of the Fourier Transform. We start
by a brief introduction of the Fourier Transform in L2(X), where X is a measurable space,
and then generate the definition into finite abelian groups by the group characters. After
that, we recap some facts in the representation theory and use them to arrive at a proper
definition for the Fourier Transform for all finite groups. In order to avoid redundancy, we
will omit some of the definitions and lemmas. One can refer to the original paper [Dan18]
for more details.

2.1. Fourier Theory on Measurable Space. In this subsection, we recall briefly the
Fourier Transform in a measurable space X.

Recall L2(X) , {f | (
∫
X |f |

2)
1
2 < ∞} is a Hilbert space if one unifies functions that

are equivalent almost everywhere, with the inner product defined as 〈f, g〉 =
∫
X fg. This

allows us to define the orthogonality between functions, and moreover, finding a proper set
of orthonormal basis.

In fact, when X = [0, 1], the orthonormal topological basis of L2([0, 1]) are ek(x) = e−2πikx.
We can then write f by the series representation f =

∑∞
k=−∞〈f, ek〉ek, with the image of f

under the new basis {ek}∞k=−∞ is

(1) f̂(k) , 〈f, ek〉 =

∫ 1

0

f(x)e−2πikxdx,

which gives us the definition of the Fourier Transform.
By adapting (1), for any funciton f ∈ L2(R), we have:

(2) f̂(y) =

∫ ∞
−∞

f(x)e−2πiyxdx.

2.2. Fourier Theory on Finite Abelian Groups. Starting from this section, we extend
the Fourier theory to any function f : G → C, where G is some finite group. In this
subsection, we restrict G to be a finite Abelian Group.

Similarly to 2.1, we define L2(G) with the inner product 〈fa, fb〉 =
∑

g∈G fa(g)fb(g) where

fa, fb ∈ L2(G). Unlike in 2.1, the finiteness of G guarantees the integralbility and ease us
from the concern of equivalence classes. In other words, L2(G) is a Hilbert space.

In order to write f in terms of Fourier series, we recall:

Definition. A group character is a homomorphism from a group G to the multiplicative
group of S1. More spercifically, χ : G → S1 is a group character if χ satisfies χ(gh) =
χ(g)χ(h), ∀g, h ∈ G. The dual space of G is the set of characters of G, and is denoted by

Ĝ.

By this definition, it is easy to show that

Lemma 1. If χ is a character of G, then χ(g) is a |G|-th root of unity for all g ∈ G.

and

3

Lemma 2. The set of group characters of G is orthogonal in L2(G).

Proof. Suppose χa 6= χb, then for some h ∈ G, we have

χa(h)〈χa, χb〉 =
∑
g∈G

χa(h)χa(g)χb(g) =
∑
g∈G

χa(gh)χb(g) =
∑
g∈G

χa(g)χb(h−1g)

=
∑
g∈G

χa(g)χb(h)χb(g) = χb(h)〈χa, χb〉.

�

We can then show

Theorem 3. G ∼= Ĝ.

This proof is rather long and we will refer the details to [Dan18]. The general idea is

first show |G| =
∣∣∣Ĝ∣∣∣. To show this equality, one can start by assuming G is cyclic, and

then generate it to finite abelian group by G = Z/n1Z×Z/n2Z× · · · ×Z/nkZ and consider
χg , χg1(x1) · · ·χgk(xk) where each χgi is defined in the cyclic case, and x = (x1, · · · , xk) ∈ G.

After showing the equality of the order, we have G ∼= Ĝ by noticing the map g → χg is a
isomorphism.

By Lemma 1, 2 and 3, we can arrive the following theorem:

Theorem 4. The set of characters of a finite abelian group G is a basis for L2(G).

By observing the delta function forms a basis of L2(G) with the same cardinality |G|.
Above all, we can rewrite f ∈ L2(G) under the new basis {χg}g∈G as follows:

f =
∑
g∈G

〈f, χg〉χg, and

which gives us the Fourier transform of f :

(3) f̂(χ) , 〈f, χ〉 =
∑
g∈G

f(g)χ(g).

2.3. Fourier Theory on Non-Abelian Groups. Because there is no clear way of writing
functions under the basis of L2(G) where G is any finite group. We now delve into the
representation theory to look for the new basis.

2.3.1. Some facts in representation theory. For simplicity, we skip most of the proofs in this
subsubsection as we have seen most of the results in class.

2.3.2. In search of an new basis. The new basis is formed by observing that the matrix
entries corresponding to a representation are orthogonal. To show this, we first need the
following lemma:

Lemma 5. Let (ρ, V) be an irreducible representation, and let L : V → V intertwines ρ with
itself. Then L = xI where x is a scalar, and I is identity linear transformation.

Proof. In this case, L is an invertible square matrix. Let x be an eigenvalue, and W be the
corresponding eigenspace. For w ∈ W , we have

L(ρ(g)(w)) = ρ(g)(L(w)) = ρ(g)(xw) = xρ(g)(w).

4 YIAN YAO AND WEIWEI ZHANG

which implies that ρ(g)(w) ∈ W . Since W induces a subrepresentation of ρ, and ρ is
irreducible, we ahve W is either {0} or V , thus L = xI. �

Similar to 2.1, 2.2, we define L2(G) with the inner product 〈ρn,m, πi,j〉 =
∑

g∈G ρn,mπi,j,

and denote the dual space of G, the set of all irreducible representations, as Ĝ. With the
help of this lemma, we can show that

Theorem 6. Let (ρ,Ca) be an irreducible representation of G. Then 〈ρn,m, ρi,j〉 6= 0 if and
only if n = i and m = j.

Proof. Define N =
∑

g∈G ρ(g)Mρ(g−1), where M is any linear mapping Ca → Ca. Then

one can show that N intertwines ρ with itself [Dan18]. By the aboeve lemma, we have
N = xI for some x ∈ C. Since the trace of a matrix preserves under conjugation, we have
|G| tr(M) = tr(xI) = xa.

In particular, letM(m,n) = 1 form = i or n = j, and otherwise 0, we have
∑

g∈G ρn,m(g)ρi,j(g) =

〈ρn,m, ρi,j〉.
Thus, x 6= 0 ⇐⇒ tr(M) 6= 0 ⇐⇒ m = j, we have 〈ρn,m, ρi,j〉 6= 0 ⇐⇒ m = j and n =

i. �

To demostrate that the matrix entries of an irreducible representation indeed forms an
orthogonal basis, we need the following theorem:

Theorem 7. Let G be a finite group, then
∑

ρ∈Ĝ d
2
ρ = |G|.

whose proof is rather complicated, requires discussions related to left regular representa-
tions, and we refer to [Ter99] for those who are interested.

By the above discussion, we can define the Fourier transform for all finite groups as

(4) f̂(ρ) =
∑
g∈G

f(g)ρ(g).

Remark. The definition of the Fourier Transform in 3 is actually a special case of 4, since
the abelian group characters are one-dimensional representations. Thus the two definitions
are consistant.

3. The Algorithm for Computing Fourier Transforms

In this section, we will discuss the numerical algorithms of the Fourier transform. Define a
function f ∈ L2(X), where X can be either R or any finite group, by sampling f at n points
x0, x1, · · · , xn−1, we can compute

(5) f̂(yj) =
n−1∑
i=0

f(xi)e
−2πixiyi

n .

The pseudo-code for this naive implementation is as follows:

function slowFT(f) . f is an array storing sampled values of f
n← length(f)
G = SymmetricGroup(n) . Constructing Sn
groupSize = len(G)
parts = Partitions(n).list() . Determining all partitions
numParts = len(parts)
ftResult = ∅

5

for i in range(numParts) do
rep = SymmetricGroupRepresentation(parts[i], ”orthogonal”)
idRep = rep(G[0])
ftResult[str(parts[i])] = idRep
for j in range(1, groupSize) do

ftResult[str(parts[i])] += (func(G[j]))*rep(G[j])
end for

end for
return ftResult

end function

Remark. The commands in the pseudo code are actually valid code in python with the
package “Sage” imported.

As one may have already noticed, using this formula directly is rather slow: with time
complexity O(n2), as computing each value requires O(n) calculations. The two algorithms
described below will provide a more efficient algorithm by taking advantage of the symme-
tries.

3.1. The Cooley-Tukey Fast Fourier Transform. The Cooley-Tukey Fast Fourier Trans-
form can be traced back to Gauss, it computes the Fourier transform on a finite cyclic group
of order n, where n is a power of 2. This probably is the most commonly used FFT and has
been implemented and compressed in many numerical computing packages.

The basic idea behind the Cooley-Tukey FFT is the “devide and conquer” technique,
which is achieved by divide the problem in several sub-problems with smaller size, and solve
the sub-problems using the same techniques recursively. In our problem, We can split (5)
into two separate sums, one for the even terms and the other for the odd:

f̂(yj) =

n
2
−1∑
i=0

f(x2i)e
−2πi(2xi)yi

n +

n
2
−1∑
i=0

f(x2i+1)e
−2πi(2∗xi+1)yi

n

=

n
2
−1∑
i=0

f(x2i)e
−2πixiyi

n
2 + e−

2πij
n

n
2
−1∑
i=0

f(x2i+1)e
−2πixiyi

n
2(6)

To make it more clear, we can rewrite the above formular as the iteration scheme as follows:

f̂(yj) = f̂e(yj) + e−
2πij
n f̂o(yj).

where f̂e(yj) and f̂o(yj) are the even and odd terms of f̂(yj), and they can futher divided

until there is only one term in the summation. Thus, for calculating f̂(yj), we will need
log2(n) layers, and thus log2(n) operations. This means that the total time complexity for
the Cooley-Tukey FFT is O(n log2 n), which is a significant improvement than the naive
Fourier Transform.

The pseudo code for the Cooley-Tukey FFT is as follows:

function fft(f) . f is an array storing sampled values of f
n← length(f)
if n = 1 then

return f . base case, in which f̂ = f
else

6 YIAN YAO AND WEIWEI ZHANG

evens ← splitEvens(f) . splitEvens: helper: get even indexed elements
odds ← splitOdds(f) . splitOdds: helper: get odd indexed elements
tevens ← FFT(evens, n

2
) . Compute FT recursively

todds ← FFT(odds, n
2
)

end if
f̂ ← ∅
for j ∈ {1, 2, · · · , n

2
− 1} do

f̂ [j]← tevens[j] + e−
2πij
n todds[j]

f̂ [j + n
2
]← tevens[j]− e−

2πij
n todds[j]

end for
return f̂

end function

3.2. The Diaconis-Rockmore Fast Fourier Transform. Although the Cooley-Tukey
FFT 3.1 is quick and easy to use, it has limitations since it can only work for cyclic groups
and when n is a power of 2. A more general approach, developed by Diaconis and Rockmore,
can work on all finite groups. The general idea behind Diaconis-Rockmore FFT is still divided
and conquer, but instead of dividing the summation into even and odd terms(which is only
applicable when n is a power of 2), they consider a series of subgroups of G such that
G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hn = id.

More spercifically, suppose H is a subgroup of G, with [G : H] = n. Then we have that
there exists a set of elements {g1, · · · , gn} where gi ∈ G such that tni=1giH = G. We call
this set a coset representation of H in G. By the above discussion, and recall

f̂(ρ) =
∑
g∈G

f(g)ρ(g) =
n∑
i=1

∑
h∈H

f(gih)ρ(gih)

=
n∑
i=1

ρ(gi)
∑
h∈H

fi(h)ρ(h) =
n∑
i=1

ρ(gi)f̂i(ρ |H)(7)

where fi(h) , f(gih), and the second equality on the second line is achieved by observing
that

∑
h∈H fi(h)ρ(h) is the Fourier transform of fi on the representation ρ restriced to H.

To resolve the issue that ρ |H is not guarenteed to be irreducible, we know that it can be
decomposed into the direct sum of finitely many irreducible representations. Thus, we can
summarize the general steps for the Diaconis-Rockmore FFT as follows:

(1) Choose a subgroupH ofG, and determine the corresponding left transversal {g1, · · · , gn}
(2) For each gi, apply the Fourier Transform of fi on some set of irreducible representa-

tions of H.
(3) For each ρ ∈ Ĝ, construct f̂i(ρ |H).

(4) Sum over the f̂i(ρ |H) and use (7) to find the Fourier Transform of f .

Remark. By letting G = Z/2nZ, and use the chain Z/2nZ ⊃ Z/2n−1Z ⊃ · · ·Z/2Z ⊃⊃ id,
we can see that the Diaconis-Rockmore FFT reduces to be the Cooley-Tukey FFT.

3.2.1. The Diaconis-Rockmore FFT in Sn. As discussion above, the Diaconis-Rockmore FFT
is rather complicated and the detailed calculation varies when the structure of G varies. To
make the algorithm more clear, in this subsubsection, we focus on the Fourier Transform on
Sn. The choice of Sn is not random since according to Cayley’s theorem, every finite group

7

of order n is isomorphism to a subgroup of Sn, and there is a natural choice of the chain of
subsets as G = Sn ⊃ Sn−1 ⊃ · · · ⊃ S1 = id.

One of the hard part of the Diaconis-Rockmore FFT is finding the irreducible representa-
tions of Sn, we shall benefits from the following results to ease the calculation.

Definition. An integer partition of a number n is set {λ1, · · · , λk} where each λi ∈ N,
λ1 ≥ · · · ≥ λk and λ1 + · · ·+ λk = n.

Theorem 8. The set of integer partitions of n is in bijection with Ŝn, the set of irreducible
representations of Sn [Dia88].

Theorem 9 (The Branching Theorem [Dia88]). Let ρ be an irreducible representation on
Sn, represented by the partition {λ1, · · · , λk} of n. We know that ρ |Sn−1 splits into a direct
sum over a collection of irreducible representations, which can be created by subtracting 1
from any λi while maintaining the decreasing order of the integer partition.

By the aid of the Branching Theorem, we now can index the irreducible representation of
Sn by the partitions of n, and we can write down the pseudo code for the Diaconis-Rockmore
FFT on Sn. We start by implementing some helper functions.

Remark. The commands in the following pseudo codes are actually valid code in python
with the package “Sage” imported.

We first write the helper function getCosetReps, which gives us the representatives of the
coset of Sn/Sn−1. We will use the following lemma to make the calculation easier:

Lemma 10. Let r = (1, 2, · · · , n) ∈ Sn, then {r, r2, · · · , rn = e} is a set of coset represen-
tatives of Sn/Sn−1.

Proof. Suppose raSn−1 = rbSn−1 for some a, b, then ra−b ∈ Sn−1. Since r doesnot fix the
element n, we must have a = b, which finishes the proof. �

Now the function for the coset representation can simply be written as:

function nCycle(n)
return [n] + list(range(1, n))

end function

function getCosetReps(G, n)
H = G.subgroup([nCycle[n]])
return H.list()

end function

To mimic fi : h→ f(gihi), we have

function buildFunc(f , g)
function newFunc(h)

return f(gh)
end function
return newFunc . This is returning the reference of the function.

end function

The function for computing all the partitions as the representatives of Sn−1 is a typical
programming exercise problem in leetcode. The implementation can be as follows

function getSubReps(partition)

8 YIAN YAO AND WEIWEI ZHANG

newPartList = []
k = len(partition)
for i in range(k - 1) do

if partition[i] ¿ partition[i + 1] then . Check if valid partition
newPart = partition.copy()
newPart[i] -= 1
newPartList.append(newPart)

end if
end for
lastPart = partition.copy()
if lastPart[k - 1] ¿ 1 then:

lastPart[k - 1] -= 1
else

del lastPart[-1]
end if
newPartList.append(lastPart)
return newPartList

end function

Above all, we can finally write down the code for the Fast Fourier Transform:

function fastFT(f)
n = len(f)
G = SymmetricGroup(n)
if n = 1 then

return {“[1]”: matrix([f(G[0])])} . Returning a dictionary
else

cosetReps = getSubReps(G, n)
recursed = ∅
for i in range(n) do

funcG = buildFunc(f , cosetReps[i])
recursed[i] = fastFT(funcG) . recursive step

end for
ftRestricted = ∅
parts = Partitions(n).list()
numParts = len(parts)
for i in range(n) do

ftRestricted[i] = . An empty dictionary
for j in range(numParts) do . Building retricted transform

blockMat = makeBlockFT(recursed[i], parts[j])
ftRestricted[i][str(parts[j])] = blockMap

end for
end for
ftResult = . computing final FT results
for j in range(numParts) do

rep = SymmetricGroupRepresentation(parts[j], “orthogonal”)
for i in range(n) do

if i == 0 then

9

start = rep(cosetReps[i]) . Initialize the matrix
Start *= ftRestricted[i][str(parts[j])]
ftResult[str(parts[j])] = start

else
addOn = rep(cosetReps[i])
addOn *= ftRestricted[i][str(parts[j])]
ftResult[str(parts[j])] += addOn

end if
end for

end for
end if
return ftResult

end function

Finally, we attached the performance of the naive FT and the FFT on Sn as follows:

n 1 2 3 4 5 6 7 8
slowFT 0.0004 0.0020 0.0111 0.1050 4.2183 389.92 55102 -
fastFT 0.0004 0.0018 0.0110 0.1053 4.1372 69.22 1685.0 5804.6

As shown in the table, the FFT has a much better performance when n is large. In fact,
the time complexity for the FFT is approximately O(n log2 n), where this n = |G|, which is
similar to the Cooley-Tukey algorithm.

4. Applications in Multi-object Tracking Problem

Essentially, the multi-object tracking problem is a data association problem which can be
modeled by a permutation σ ∈ Sn, where σ(i) = j signifies that target i is associated with
track j. A probabilly distribution over permutations is represented by an n! dimensional
vector where each component p(σ) is a probability density function.

4.1. Canonical Projection for Dimension Reduction. By the above discussion, when
n is big, maintaining such n! information is very costly. To resolve this, we need to find a
suitable canonical projection to reduce the dimension of the problem. Such projection(from
Rn! to W(a subspace)) has to satisfies the following criteria:

• The projection can be reversed with minimal loss of information.
• The projection should be symmetric in the sense that each component p(σ) suffers

the same loss during the projection.
• It should be possible to apply observation and noise update directly to the projected

distribution.

By the discussion in section 2, representation theory allows us to extend the concept of
Fourier transformation to any finite groups, and the map f → f̂(ρ) can be regarded as
a projection of f onto a d2ρ dimensional subspace Vρ, where dρ is the dimension of the

representation. Since f̂ρ, so-called isotypic components, captures the variation of f at a
different level of complexity, we shall use this idea to reduce the dimension.

We first transform Sn into the Cayley graph, more specifically, two permutations are
connected if they only differ by a transposition (i, j) for some i, j. The Laplacian of the
graph is ∆ = D − A, where D is the degree matrix, and A, is the adjacency matrix.
According to general spectral theory, the orthogonal eigenvectors v1, v2, · · · , vn of ∆ ordered

10 YIAN YAO AND WEIWEI ZHANG

by their eigenvalues α1, α2, · · · , αn corresponds to the increasingly complex functions on the
Cayley graph.

By the above discussion, since each isotypal subspace Vρ is spanned by the eigenvectors
of ∆ with eigenvalue αρ, the proper subspace to project the probability distribution p is
Wαthres = ⊕αρ≤αthresVρ for some threshold αthres.

To apply the above low-pass-filter idea, we need to find out exactly the low frequency com-
ponents. The discussion in Theorem 9 (or just use the Young diagram) give us a representa-
tive for the inequivalent irreducible representations over C. The eigenvalues corresponding
to the representations can be calculated by the following lemma:

Lemma 11. The eigenvalue of ∆ corresponding to the isotypal indexde by λ is

αλ =

(
n
2

)(
1− tr[ρλ([1, 2])]

dλ

)
.

4.2. Tracking Targets. According to , a probabilistic data association algorithm must have
the followint three components:

• A noise model describing how the distribution p degrades in the absence of observa-
tions.
• A rule for updating p when one or more targets are observed at specific tracks.
• An inference procedure for recovering the most likely assignment of targets to tracks.

4.2.1. Naive Update Scheme. Assume that with probability π, target oi is at track rj, then
we have

p(Oi→j | σ) =

{
π if σ(i) = j,
1−π
n−1 if otherwise.

where p(Oi→j is the probability of target i is observed as track j. Thus we can have the
following update rule:

(8) p′(σ) =

{
1
Z
πp(σ) for σ(i) = j

1
Z

1−π
n−1p(σ) for σ(i) 6= j

where Z = πp([σ(i) = j]) + 1−π
n−1(1− p([σ(i) 6= j]) is the normalizer.

4.2.2. Update Scheme with Fourier Transform. Again, the naive update scheme is of little
practically use if n is large. To resolve this, one can perform the same Fourier Transform
procedure to compute the Fourier coefficient. By filtering out the high frequency terms and
modifying the Naive update scheme, we can have a fast algorithm while maintaining most
of the informations.

Remark. In [KHJ07], instead of using the Diaconis-Rockmore FFT, the authors used an-
other metho called the Clausen’s FFT, which results in the following equation:

f̂(ρ)λ =
n∑
j=1

ρ([j, n])⊕λ− f̂j(ρλ−)

where [i, j] are permuations of the following form:

[p, q](i) =


i+ 1 if p ≤ i ≤ q − 1

p if i = q

i otherwise

11

. The authors also “twisted” FFT to be

f̂(ρ)λ =
n∑
j=1

ρ([j, n])⊕λ− f̂j(ρλ−)ρ([j, n])−1

with no explicit theoretical time complexity.

References

[Dan18] Rohan Dandavati. The fourier transform on finite groups: Theory and computation. 2018.
[Dia88] Persi Diaconis. Chapter 7: Representation Theory of the Symmetric Group, volume Volume 11 of

Lecture Notes–Monograph Series, pages 131–140. Institute of Mathematical Statistics, Hayward,
CA, 1988.

[KHJ07] Risi Kondor, Andrew Howard, and Tony Jebara. Multi-object tracking with representations of the
symmetric group. 2:211–218, 21–24 Mar 2007.

[Ter99] Audrey Terras. Fourier Analysis on Finite Groups and Applications. London Mathematical Society
Student Texts. Cambridge University Press, 1999.

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta GA
30332-160

E-mail address: yyao93@gatech.edu

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta GA
30332-160

E-mail address: wzhang393@gatech.edu

	1. Introduction
	2. The Theory of Fourier Transform
	2.1. Fourier Theory on Measurable Space
	2.2. Fourier Theory on Finite Abelian Groups
	2.3. Fourier Theory on Non-Abelian Groups

	3. The Algorithm for Computing Fourier Transforms
	3.1. The Cooley-Tukey Fast Fourier Transform
	3.2. The Diaconis-Rockmore Fast Fourier Transform

	4. Applications in Multi-object Tracking Problem
	4.1. Canonical Projection for Dimension Reduction
	4.2. Tracking Targets

	References

