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NATHAN SOEDJAK

Abstract. In this expository paper, we define the Alexander polynomial of a knot and look

at an interesting result of de Rham relating certain representations of the knot group to the
roots of the Alexander polynomial.

.

1. Introduction

Discovered by James Wadell Alexander II in 1928, the Alexander polynomial is a knot
invariant that encodes certain topological information about the knot complement. The purpose
of this expository paper is to give a brief introduction to the Alexander polynomial and some
of its properties. The paper is organized as follows. In section 3 we consider the homology of
the infinite cyclic cover of the knot complement and use it to define the Alexander module and
Alexander polynomial. Using Seifert surfaces, we also give some of their properties, including
the famous skein relation. Then in section 4, we give an alternate definition of the Alexander
module solely in terms of the knot group, from which the result of de Rham follows easily.

2. Preliminaries

In this section we review some basic notions from knot theory and algebra that will be used
in the paper.

2.1. Knots. A (tame) knot is a subset of S3 which is a piecewise-linear simple closed curve.
Two knots K1 and K2 are equivalent if there is an ambient isotopy between them, i.e. a
continuous family of homeomorphisms Ft : S3 → S3, t ∈ [0, 1], such that F0 = id and F1(K1) =
K2. By results in topology, this turns out to be equivalent to saying that there exists a single
orientation-preserving homeomorphism F : S3 → S3 such that F (K1) = K2.

Note that if two knots K1 and K2 are equivalent, then certainly their complements S3 \K1

and S3 \K2 are homeomorphic 3-manifolds. One might ask whether the converse also holds,
but it turns to be not quite true. In order to give a counterexample, let us first define the mirror
image of a knot to be its image under any orientation-reversing homeomorphism h : S3 → S3.
(Observe that up to equivalence of knots, the resulting knot is independent of the choice of h.)
More concretely, given a diagram of a knot (i.e. a projection of the knot onto some plane with
over and under crossing indicated), a diagram of its mirror image is given by changing all the
over-passes to under-passes. A simple counterexample to the above proposed converse is then
provided by a trefoil knot and its mirror image: they have homeomorphic complements, but
one can show that they are not equivalent, e.g. by comparing their Jones polynomials.

However, the converse turns out to be true if we use a slightly coarser notion of knot equiv-
alence obtained by taking the original definition and declaring additionally that a knot and its
mirror image are equivalent. (More simply stated, this weaker definition states that two knots
K1 and K2 are equivalent if there exists any homeomorphism F : S3 → S3 (not necessarily
orientation-preserving) such that F (K1) = K2.) This is the Gordon-Luecke Theorem (1989).
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The upshot of all this is that the task of distinguishing knots is (essentially) equivalent to the
task of distinguishing their 3-manifold complement spaces.

Given a knot K, it is thus natural to consider algebraic invariants of its complement. For
instance, one can consider the fundamental group of the complement, which is called the knot
group of K. Given a diagram of a knot K, it turns out that there is a simple algorithm for
writing down a presentation of its knot group; the resulting presentation is called a Wirtinger
presentation for the knot group of K. To begin, let there be n arcs in the knot diagram, and
associate to the ith arc of the diagram the symbol ai. (The arcs of a knot diagram are just
its connected components. For instance, the knot diagram of the figure-eight knot in Figure
2 has four arcs, labeled a1, a2, a3, a4.) The symbols a1, a2, . . . , an will be the generators of the
knot group. Now give the knot an orientation, and at each crossing c define the relation rc
described in Figure 1; it will depend on whether the crossing is a “positive” crossing (left)
or “negative” crossing (right). Then it turns out that the knot group has the presentation

Figure 1. Wirtinger relations for positive and negative crossings.

〈a1, a2, . . . , an | r1, r2, . . . rn〉. Each ai may be interpreted as a loop that starts at a fixed base-
point somewhere above the page, travels directly to the ith arc, encircles it once in “right-hand
rule” fashion, and finally returns directly to the basepoint. It is then not hard to see that the
relations r1, r2 . . . , rn must hold. More difficult is showing that these are a complete set of
relations. One proof of this fact involves constructing a suitable 2-dimensional CW complex
that the knot complement deformation retracts onto, and then using van Kampen’s theorem
to calculate the fundamental group of the complex. More details can be found in [1, p. 55].
Finally, one can show that each of the relations is a consequence of the others, so any one of
them may be dropped.

Example 2.1. Figure 2 shows a diagram of the figure-eight knot, with arcs a1, a2, a3, a4 labeled
and orientation as shown. Using the algorithm just described, we find that one presentation

Figure 2. The figure-eight knot.
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for the knot group of the figure-eight knot is

〈a1, a2, a3, a4 | a3a2 = a1a3, a2a4 = a1a2, a4a2 = a3a4, a1a4 = a3a1〉.
As noted above, any one of the relations can be dropped.

By abelianizing the knot group and using the fact that the ai are all conjugate to each other,
we see that the first homology group H1(S3 \K) of the knot complement is always Z. (Note: in
this paper, all homology groups are with Z coefficients.) Moreover, we see that it is generated
by the homology class corresponding to any one of the ai, or in other words the homology class
of a meridian curve of a small closed solid-torus tubular neighborhood of the knot. If the knot
K is oriented, then it is customary to think of 1 ∈ Z as representing the homology class of such
a meridian curve, oriented so that it encircles the oriented knot K in right hand rule fashion
(as opposed to the same curve with the opposite orientation).

Now if C is any oriented simple closed curve in S3 \K, the homology class of [C] ∈ H1(S3 \
K) = Z is called the linking number of the oriented knots C and K, denoted lk(C,K). Given
a diagram of C and K, their linking number can be though of more concretely as half the sum
of the signs of the crossings where one strand is from C and the other is from K (exercise). By
definition, the sign of a crossing is +1 if the crossing is positive in the sense of Figure 1, and
−1 if the crossing is negative. It follows in particular from this that lk(C,K) = lk(K,C).

2.2. Finitely-presented modules. Let M be a module over a commutative ring A. A finite
presentation for M is a finite set of generators x1, . . . xn ∈ M along with a finite complete set
of relations r1, . . . rm among them. This means that M is isomorphic to the quotient of the free
A-module 〈x1, . . . xn〉 by the submodule generated by the relations r1, . . . rm. In other words,
a finite presentation for M is an exact sequence of A-modules

Am
α−→ An

ϕ−→M → 0.

The images of the standard basis elements of An under ϕ correspond to the generators xi
from above and the images of the standard basis elements of Am under ϕ ◦ α correspod to the
relations ri. If such a finite presentation for M exists, then we say that M is finitely presented,
and we can summarize the presentation by the matrix representation of the map α with respect
to the standard bases of Am and An. This n ×m matrix is called a presentation matrix for
M . In other words, writing ri = a1ix1 + · · ·+ anixn for all 1 ≤ i ≤ n, the presentation matrix
corresponding to this presentation is simply the matrix (aij)1≤i≤n,1≤j≤m; the rows correspond
to the generators and the columns correspond to the relations among the generators.

Next we state a fundamental fact about finite-presented modules. A short proof can be
found in [2, p. 49–50].

Proposition 2.2. Any two presentation matrices P and P ′ of a module M are related by a
sequence of the following types of moves and their inverses:

(a) Permutation of rows or columns

(b) Replacement of the matrix P by

(
P 0
0 1

)
(c) Addition of an extra column of zeros
(d) Addition of a scalar multiple of a row (or column) to another row (or column)

Because modules can be rather complicated objects, it is sometimes useful to associate to
them simpler invariants such as the following.

Definition 2.3. Let M be a finitely-presented module over a commutative ring A. The ith

elementary ideal M is the ideal of A generated by the (n− i + 1)× (n− i + 1) minors in any
n×m presentation matrix of M .
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Recall that a k×k minor of a matrix P is the determinant of some k×k submatrix of P , i.e.
a k× k matrix formed from k rows and k columns of M . The reader might like to verify using
Proposition 2.2 that this definition does not depend on the choice of presentation matrix, and
so it is well-defined.

3. The infinite cyclic cover of the knot complement

3.1. Alexander module and Alexander polynomial. We have seen that the knot group is a
knot invariant. However, in general it is difficult to distinguish groups from their presentations,
so it is desirable to obtain a simpler invariant. The first homology group of the knot complement
is unfortunately too simple, since it is always Z. However, it turns out that considering the
first homology group of the infinite cyclic cover of the complement will lead to the fairly good
polynomial invariant known as the Alexander polynomial.

Let K be a knot, X be its complement in S3, and G = π1(X) be its knot group. For
any group H, let H ′ denote its commutator subgroup. Let p : X∞ → X be the covering
space corresponding to the normal subgroup G′ ≤ G = π1(X), so that p∗(π1(X∞)) = G′.
Recall from covering space theory that the group of deck transformations is isomorphic to
G/G′ = H1(X) = Z, so we refer to X∞ as the infinite cyclic cover of X. Observe that X∞
is the only covering space with group of deck transformations Z (exercise), which justifies our
referring to X∞ as the infinite cyclic cover.

Denote by t : X∞ → X∞ one of the two generators for the group Z of deck transformations
of X∞. Then t induces an isomorphism t∗ : H1(X∞)→ H1(X∞) on homology, which by abuse
of notation we will denote simply by t. This gives rise to a group action of 〈t〉 on H1(X∞),
which in turn gives rise in the natural way to a Z[t, t−1]-module structure on H1(X∞). This
module is of course a knot invariant. Now we are ready to define the Alexander polynomial.
Actually, there is a whole family of Alexander polynomials.

Definition 3.1. The Alexander module of a knot K is the Z[t, t−1]-module H1(X∞). It turns
out that the Alexander module is finitely-presented, and its ith elementary ideal is called the
ith Alexander ideal of K. The ith Alexander polynomial of K is a generator of the smallest
principal ideal of Z[t, t−1] containing the ith Alexander ideal. The 1st Alexander polynomial of
K is called simply the Alexander polynomial, and is denoted ∆K(t).

Note that Alexander polynomials are defined only up to multiplication by the units ±tn
(n ∈ Z) of the ring Z[t, t−1]. In this paper we will focus only on the Alexander polynomial,
meaning the 1st Alexander polynomial. Definition 3.1 means in particular that if we happen to
have a square presentation matrix for the Alexander module, then the Alexander polynomial
is simply the determinant of that square matrix.

3.2. Seifert surfaces. In order to be able to prove things about the Alexander polynomial, it
will be useful to understand the infinite cyclic cover X∞ in a more geometric way. For this we
need the concept of a Seifert surface of a knot.

Definition 3.2. A Seifert surface of a knot K is a connected compact orientable surface in S3

whose boundary is K. The genus of K is the minimum genus of any Seifert surface for K.

Given a diagram of a knot, there is an algorithm called Seifert’s algorithm that contructs a
Seifert surface for the knot. For a description of this algorithm, see for instance [2, p. 16]. In
particular, every knot has a Seifert surface.

Let K be a knot with Seifert surface F . It is convenient to think of the knot complement X
as the closure of the complement of some tubular neighborhood N of K. Since F ∩X is just F
with a small neighborhood of ∂F removed, we’ll refer to F ∩X as F from now on. Since F is
orientable, it has a neighborhood F × [−1, 1] in X, where F × {0} is identified with F . Define
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maps p−, p+ : F → S3 \ F by p−(x) = (x,−1) and p+(x) = (x, 1). This maps “push” points
slightly off of F into S3 \ F .

To get a glimpse of how Seifert surfaces can help us understand the infinite cycic cover X∞
of X, consider cutting X along F . In other words, consider the space Y obtained by removing
from X the neighborhood F × (−1, 1) of F from before. Note that p−(F ) and p+(F ) are part
of the boundary of Y , and X can be recovered from Y by just gluing togeher p−(F ) and p+(F )
in the natural way. Then the infinite cyclic cover X∞ of X can be contructed from gluing
together countably many copies of Y in linear fashion. (Think of how R is the infinite cyclic
cover of S1.)

Example 3.3. If K is the unknot, then it has a Seifert surface F which is just a disc D2.
Cutting X along F is like removing an open ball from S3 and results in Y = D2 × [−1, 1],
with p−(F ) = D2 × {−1} and p+(F ) = D2 × {1}. Gluing together countably many copies
of Y together then yields X∞ = D2 × R. Since this is contractible, the Alexander module is
just H1(X∞) = 0. A presentation matrix for this module is simply (1), and the Alexander
polynomial is the determinant of this matrix, which is 1.

Unfortunately, for more complicated knots it is not really possible to proceed directly like
this. However, using this description of X∞ it is still possible to calculate the Alexander module
H1(X∞) in terms of the Seifert surface (Theorem 3.5). But before we can do so, we need to
first introduce a few more definitions.

Definition 3.4. Let K be a knot with Seifert surface F . The corresponding Seifert form is
the unique biliner map

α : H1(F )×H1(F )→ Z
satisfying α([x], [y]) = lk(p−(x), y) = lk(x, p+(y)) for all oriented simple closed curves x and y
in F .

Recall that lk(·, ·) denotes linking number. A bit of algebraic topology shows that there
is indeed a unique such bilinear map [2, p. 51-53]. Given a basis for H1(F ), the matrix
representation of the Seifert bilinear form is called a Seifert matrix. Explicitly, if {fi} are
oriented simple closed curves in F such that {[fi]} is a basis for H1(F ), then the entries of the
Seifert matrix A are given by Aij = α([fi], [fj ]) = lk(p−(fi), fj).

Now with the above description of X∞ in terms of Y , a little algebraic topology calculation
shows how the Alexander module H1(X∞) is related to a Seifert matrix ([2, p. 54-55]):

Theorem 3.5. Let K be a knot with Seifert surface F and corresponding Seifert form α. If A
is a matrix representing α with respect to any basis of H1(F ), then tA− AT is a presentation
matrix for the Alexander module H1(X∞) of K. Since this is a square matrix, the Alexander
polynomial is its determinant det(tA−AT ).

This theorem is important because it allows us to prove many interesting properties about
the Alexander polynomial, such as the following.

Corollary 3.6. For any knot K,

genus(K) ≥ 1

2
· breadth(∆K(t)),

where the breadth of a Laurent polynomial is defined as the difference between the highest and
lowest degrees appearing in the Laurent polynomial.

Proof. Let g denote the genus of K, and A denote the Seifert matrix corresponding to the
associated Seifert surface. Then A is a 2g× 2g matrix, so ∆K(t) = det(tA−AT ) is a bona fide
polynomial with degree (and hence breadth) at most 2g. The proof is complete. �
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Corollary 3.7. For any knot K,

(1) ∆K(t) = ∆K(t−1) up to multiplication by units.
(2) ∆K(1) = ±1.
(3) ∆K(t) = a0 +a1(t+ t−1)+a2(t2 + t−2)+ · · · up to multiplication by units, where ai ∈ Z

and a0 is odd.

Proof. These facts follow easily from Theorem 3.5. See [2, p. 58] for details. �

It should be noted that much of what has been said up to this point applies not only to knots
but more generally to oriented links. (A link is a disjoint collection of knots.) In particular we
can define an Alexander polynomial for them, and Theorem 3.5 still holds.

Recall that the Alexander polynomial is defined only up to multiplication by the units ±tn
of Z[t, t−1]. In order to state the next result, we need a normalized form of the Alexander
polynomial.

Definition 3.8. For any oriented link L, its Alexander-Conway polynomial is defined as

∆L(t) := det(t1/2A− t−1/2AT ) ∈ Z[t1/2, t−1/2]

where A is any Seifert matrix for L. Thus if A is an n×n matrix, then ∆L(t) = t−n/2 det(tA−
AT ).

Although it’s not obvious, this definition is well-defined and an invariant.
The following relation allows one to compute Alexander polynomials recursively.

Corollary 3.9 (Skein relation). Let L+, L−, and L0 be oriented links which differ only in some
small ball, where they are as shown in Figure 3. Then their Alexander-Conway polynomials
satisfy the relation

∆L+
(t)−∆L−(t) = (t−1/2 − t1/2)∆L0

(t).

Figure 3. Three oriented links differing only in a small ball.

Proof. Use Theorem 3.5. See [2, p. 82-83] for details. �

4. The knot group

4.1. Alexander module in terms of the knot group. In this section we give another,
equivalent definition of the Alexander module of a knot in terms of just its knot group (Propo-
sition 4.2). The idea is to take the homological Definition 3.1 and reformulate everything in
terms of fundamental groups using the fact that the first homology group of a space is just the
abelianization of its fundamental group.

Let us first recall the notation. As before, let K be a knot, X be its complement in S3,
G = π1(X,x0) be its knot group, and p : (X∞, x̃0) → (X,x0) be the infinite cyclic covering
space of X, so that p∗(π1(X∞, x̃0)) = G′. Also, let t : X∞ → X∞ be one of the two generators
for the group Z of deck transformations of X∞.
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Since p∗ is injective, we have that the map p∗ : π1(X∞, x̃0) → G′ is an isomorphism of
groups. We can therefore identify the Alexander module H1(X∞) with the abelian group
π1(X∞, x̃0)/π1(X∞, x̃0)′ ∼= G′/G′′ in the following natural way (where G′′ = (G′)′ denotes
the commutator subgroup of G′). First let h : π1(X∞, x̃0) → H1(X∞) denote the natural
map that sends [f ] to the homology class of f , when interpreted as a 1-cycle. Then it is well-
known that h is a surjective homomorphism and that its kernel is the commutator subgroup of
π1(X∞, x̃0). (This is of course the reason why the first homology group is the abelianization of
the fundamental group. For a proof of these facts, see for example [1, p. 166].) Hence the group
isomorphism p∗ : π1(X∞, x̃0)→ G′ induces a group isomorphism ϕ : H1(X∞)→ G′/G′′ defined
by the following commutative diagram (where ab : G′ → G′/G′′ denotes the abelianization
quotient map):

π1(X∞, x̃0) G′

H1(X∞) G′/G′′

p∗

h ab

ϕ

Note that G′/G′′ is currently only an abelian group and ϕ is only a group isomorphism. We
would like now to define a Z[t, t−1]-module structure on G′/G′′ so that ϕ is not only a group
isomorphism but also a Z[t, t−1]-module isomorphism. This will give us a new definition of the
Alexander module as the Z[t, t−1]-module G′/G′′.

To define the Z[t, t−1]-module structure on G′/G′′, it suffices to define how t ∈ Z[t, t−1]
acts on G′/G′′, and we want this to correspond to the action of t∗ on the Alexander module
H1(X∞). There is only once choice here, and it is the unique map t′ : G′/G′′ → G′/G′′ that
makes the following diagram commute:

H1(X∞) H1(X∞)

G′/G′′ G′/G′′

t∗

ϕ ϕ

t′

We claim that we can describe t′ in another, more explicit way as follows.

Lemma 4.1. Let g ∈ G denote an element that becomes a generator in the abelianization
G/G′ ∼= Z. Then the map t′ : G′/G′′ → G′/G′′ defined by conjugation by g, i.e.

t′([x]) = [gxg−1],

satisfies the above commutative diagram.

Proof. We first show how g and t∗ are related. Note that g is the homotopy class of some
loop γ based at x0. Denote by γ̃ the lift of γ to X∞ beginning at x̃0. Then the unique deck
transformation of X∞ that sends x̃0 = γ̃(0) to x̃1 := γ̃(1) is a generator for the group Z of deck
transformations, as can be seen from the definition of g and the standard isomorphism between
the group of deck transformations and π1(X)/p∗(π1(X∞)) = G/G′. (For a description of this
isomorphism, see for example [1, p. 71].) This deck transformation is either t or t−1, but we
can assume that it is t by replacing g by g−1 if necessary.

Now to actually prove the lemma, let [[`]] ∈ G′/G′′, where ` is a loop in X based at x0.
We want to show that t′([[`]]) = ϕ(t∗(ϕ

−1([[`]]))). From the first commutative diagram, we get

that ϕ−1([[`]]) is the homology class of the lifted loop ˜̀ of ` beginning at x̃0. Applying t∗ to

this gives the homology class of t ◦ ˜̀, which is a loop based at t(x̃0) = x̃1. Now recall that γ̃

is a path from x̃0 to x̃1, so the loops t ◦ ˜̀ and γ̃ · (t ◦ ˜̀) · γ̃−1 are freely homotopic and thus
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homologous. Finally, applying ϕ to the homology class of γ̃ · (t ◦ ˜̀) · γ̃−1 (which is a loop based
at x̃0) and using the first commutative diagram yields [[γ · ` · γ−1]] = [g[`]g−1] = t′([[`]]) as
desired. This establishes the lemma. �

In summary, we have shown:

Proposition 4.2. Let K be a knot, G be its knot group, and g ∈ G an element that becomes
a generator in the abelianization G/G′ ∼= Z. Then the Z[t, t−1]-module G′/G′′ defined by
t · [x] = [gxg−1] is isomorphic to the Alexander module H1(X∞) of K.

Of course, to calculate the Alexander polynomial from the Alexander module we need to be
able to write down a presentation matrix for the Alexander module, which we will see how to
do next.

Let G = 〈a1, a2, . . . an | r1, r2, . . . , rn−1〉 be a Wirtinger presentation of the knot group. Be-
cause the ai are all conjugate to each other (this follows directly from the relations), the images
of a1, a2, . . . , an in the abelianization G/G′ ∼= Z are all the same, namely one of the generators
1 or −1. If we now define

bi := aia
−1
n , for i = 1, 2, . . . , n,

then it follows from the previous sentence that bi ∈ G′ for all i = 1, . . . n−1. (Note that bn = e.)
Moreover, it’s an easy exercise to show that the elements b1, b2, . . . , bn−1 ∈ G′ together with
their conjugates anb1a

−1
n , anb2a

−1
n , . . . , anbn−1a

−1
n ∈ G′ by an generate G′. (Use the fact that

G′ is generated by the commutators among only the ai.) For convenience, define

b′i := anbia
−1
n ∈ G′, for i = 1, 2, . . . , n,

so the previous statement is that b1, b2, . . . , bn−1, b′1, b
′
2, . . . , b

′
n−1 ∈ G′ generate G′. (Note that

b′n = e.)
Of course, these generators of G′ satisfy several relations. Namely, given a relation from the

Wirtinger presentation of G of the form aiak = ajai, i.e.,

(4.1) aiaka
−1
i a−1j = e,

we can substitute ai = bian for all i into this to get (bian)(bkan)(a−1n b−1i )(a−1n b−1j ) = e, which

can be rewritten as bi(anbka
−1
n )(anb

−1
i a−1n )b−1j = e, i.e.

(4.2) bib
′
k(b′i)

−1b−1j = e.

Thus each of the n− 1 relations of the form (4.1) in the Wirtinger presentation of G gives rise
to a corresponding relation (4.2) among the generators b1, . . . , bn−1, b′1, . . . , b

′
n−1 of G′.

Now we pass from G′ to its abelianization G′/G′′. The abelianization is generated (as a
group) by the images of the generators b1, . . . , bn−1, b′1, . . . , b

′
n−1 of G′. So for i = 1, 2, . . . , n,

denote by ci ∈ G′/G′′ the image of bi in G′/G′′. As for the images of the b′i, recall from
Proposition 4.2 that G′/G′′ has a Z[t, t−1]-module structure, which we can use to write the
image of b′i = anbia

−1
n in G′/G′′ as t · ci. Therefore G′/G′′ is generated as an abelian group by

c1, . . . , cn−1, t · c1, . . . , t · cn−1. Hence as a Z[t, t−1]-module, G′/G′′ is generated by c1, . . . , cn−1.
Furthermore, in the abelianization the relation bib

′
k(b′i)

−1b−1j = e from (4.2) turns into (using

additive notation now because we are now in an abelian group) the relation ci+t·ck−t·ci−cj = 0,
i.e.

(4.3) (1− t) · ci + t · ck − cj = 0.

(Because cn = 0, all appearances of cn can be dropped to make the above equation a relation
among only c1, . . . , cn−1.) In summary, G′/G′′ is a Z[t, t−1]-module with generators c1, . . . , cn−1
that satisfy n−1 relations of the above form (4.3), each coming from a relation in the Wirtinger
presentation of G of the form (4.1). Although we do not prove it here, it turns out that these
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n − 1 relations form a complete set of relations among the generators c1, . . . , cn−1 [3, p. 191],
so this gives us an (n− 1)× (n− 1) presentation matrix for the Alexander module G′/G′′.

Example 4.3. Recall from Example 2.1 that the knot group of the figure-eight knot is generated
by a1, a2, a3, a4 with relations

a3a2 = a1a3,

a2a4 = a1a2,

a4a2 = a3a4.

Therefore the Alexander module of the figure-eight knot is generated by c1, c2, c3 with relations

(1− t) · c3 + t · c2 − c1 = 0,

(1− t) · c2 − c1 = 0,

t · c2 − c3 = 0.

So a presentation matrix for the Alexander module is

−1 t 1− t
−1 1− t 0
0 t −1

T

. The Alexander

polynomial is then the determinant of this matrix, which is t2 − 3t+ 1.

4.2. Representations of the knot group. Let L denote the group of Möbius transformations
of C of the form z 7→ xz + y, for some x, y ∈ C with x 6= 0. For brevity, we denote the
transformation z 7→ xz+y simply by (x, y). Written explicitly, the group operation is (x1, y1)◦
(x2, y2) = (x1x2, x1y2 +y1). In this section we will study representations (i.e. homomorphisms)
from the knot group G of a knot to L.

Remark 4.4. Because L is ismorphic to the matrix groups

M1 :=

{(
x y
0 1

)
: x, y ∈ C, x 6= 0

}
⊂ GL2(C)

and

M2 :=

{(
t a
0 t−1

)
: t, a ∈ C, t 6= 0

}
/{±I} ⊂ PSL2(C),

(via the ismomorphisms

(
x y
0 1

)
7→ (x, y) and

(
t a
0 t−1

)
7→ (t2, at), respectively), the following

discussion can also be stated in terms of representations of G into M1 or M2.

To begin, let ρ : G → L be a representation and let 〈a1, a2, . . . , an | r1, r2, . . . , rn−1〉 be a
Wirtinger presentation of G. Denote ρ(ai) = (xi, yi). We start by making a series of small
observations.

(1) Since the ai are all conjugate to each other, so are their images ρ(ai), which (since
two transformations in L are conjugate if and only if they have the same scale factor)
immediately forces all the xi to be equal to the same value, say, x ∈ C.

(2) Observe that ρ is conjugate/isomorphic to a representation with yn = 0 via the iso-
morphism z 7→ z + yn

1−x (to come up with this isomorphism, think about fixed points).
So we may assume without loss of generality that yn = 0 from now on. Note that the
value of x is unchanged by this (in fact, by any) isomorphism.

(3) Note if yi = 0 for all i = 1, . . . , n, then the image of ρ is the subgroup of L generated
by (x, 0); hence ρ is an abelian representation, in the sense that its image is an abelian
group (in this case Z). Conversely, it is easy to see that if ρ is an abelian representa-
tion, then yi = 0 for all i = 1, . . . , n. Because abelian representations factor through
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G/G′ ∼= Z, they are uninteresting, and so we will restrict our attention to non-abelian
representations ρ from now on.

Next, each relation from the presentation of G is of the form aiak = ajai, which upon
applying ρ yields (x, yi)◦(x, yk) = (x, yj)◦(x, yi). This simplifies to (x, xyk+yi) = (x, xyi+yj),
or equivalently

(1− x)yi + xyk − yj = 0.

This gives an (n − 1) × (n − 1) linear system in y1, y2, . . . , yn−1, represented by, say, the
(n − 1) × (n − 1) matrix M . (Recall from point (2) above that yn = 0.) Remarkably, this
equation is exactly the same as equation (4.3) from the previous section if we identify each yi
with ci and x with t. Therefore MT , with x replaced by t, is in fact a presentation matrix for
the Alexander module.

Finally we come to the denouement of the entire paper. Since ρ is not abelian (see point
(3) above), we do not have yi = 0 for all i, which implies that M is not invertible. Thus
detMT = detM = 0, which means that x is a root of the determinant of the Alexander
module, i.e. x is a root of the Alexander polynomial. We can extend this result slightly with
the following two observations: (i) ρ maps the commutator subgroup G′ of G to the commutator
subgroup of L, which is none other than the subgroup of translations {(1, y) : y ∈ C}, and (ii)
the set of roots of the Alexander polynomial is closed under inversion (by Corollary 3.7 (1)).
We obtain the following result.

Theorem 4.5. Let K be a knot with knot group G and ρ : G → L be a non-abelian represen-
tation of G. Then for any g ∈ G whose image in the abelianization G/G′ ∼= Z is a generator
±1, if we denote ρ(g) = (x, y), then x is in fact a root of the Alexander polynomial ∆K(t).

An amusing corollary is that if ∆K(t) = 1 (for instance, if K is the unknot or the (−3, 5, 7)-
pretzel knot), then no non-abelian representations ρ : G→ L exist.
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