Lecture 2: Unpredictability

- Pick up a syllabus if you didn't get one last time
- Exam dates: 2/20, 3/31, and 5/5 (mark on your calendar now!)
- Homework 1 has been posted on Piazza, due on Monday 1/27
- Textbook reading: The Block Cipher Companion, chapter 1
- Summer teaching opportunity for high school outreach program

"Cryptography is about **communication** in the presence of an **adversary**."

-Prof. Ron Rivest, MIT

(For now) protecting data confidentiality at rest

encrypt **C** = *E*(**K**, **P**)

private message **P**

decrypt P = D(K, C)

???

"Confidentiality xor authenticity is **not possible**. If you don't have both, often you don't have either."

–Prof. Matthew Green, Johns Hopkins

Course outline

- 1. Protecting data confidentiality at rest
- 2. Attacking data confidentiality at rest \rightarrow Exam 1
- 3. Adding data integrity
- 4. Protecting data in transit \rightarrow Exam 2
- 5. Protecting data during use
- 6. Designing symmetric ciphers

How can Alice encode messages so Eve can't read them?

Substitute each character

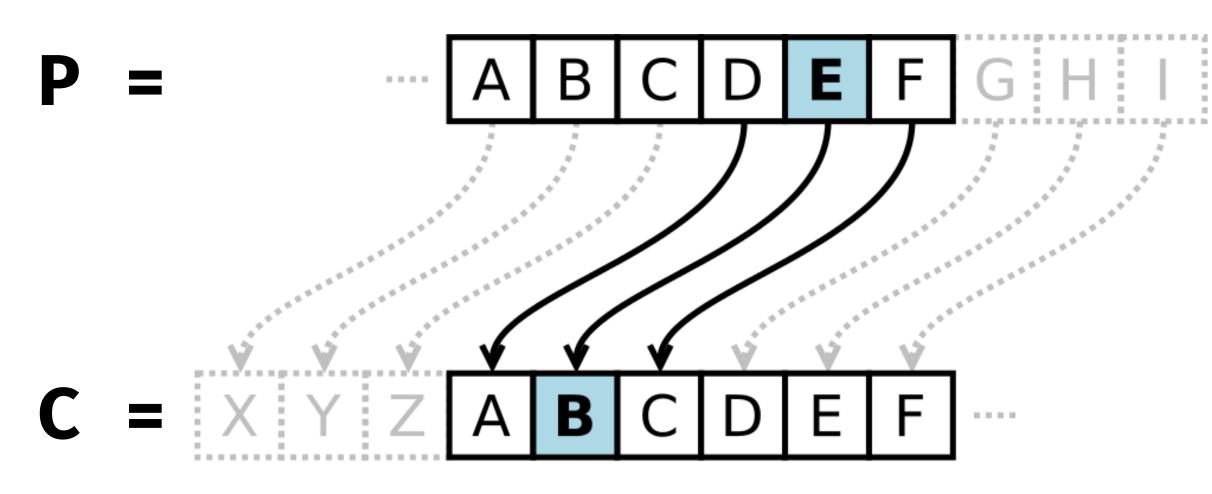
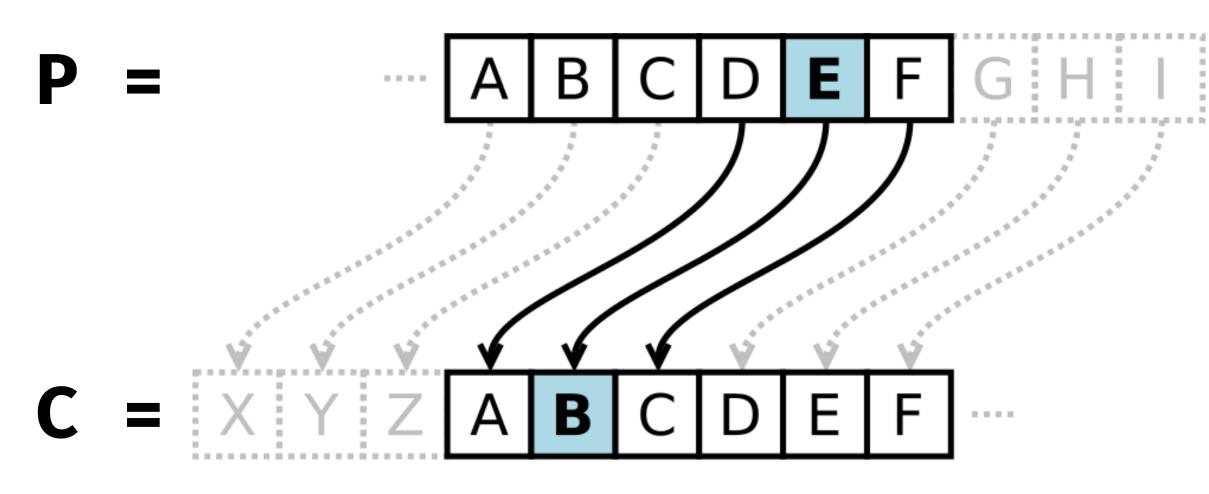
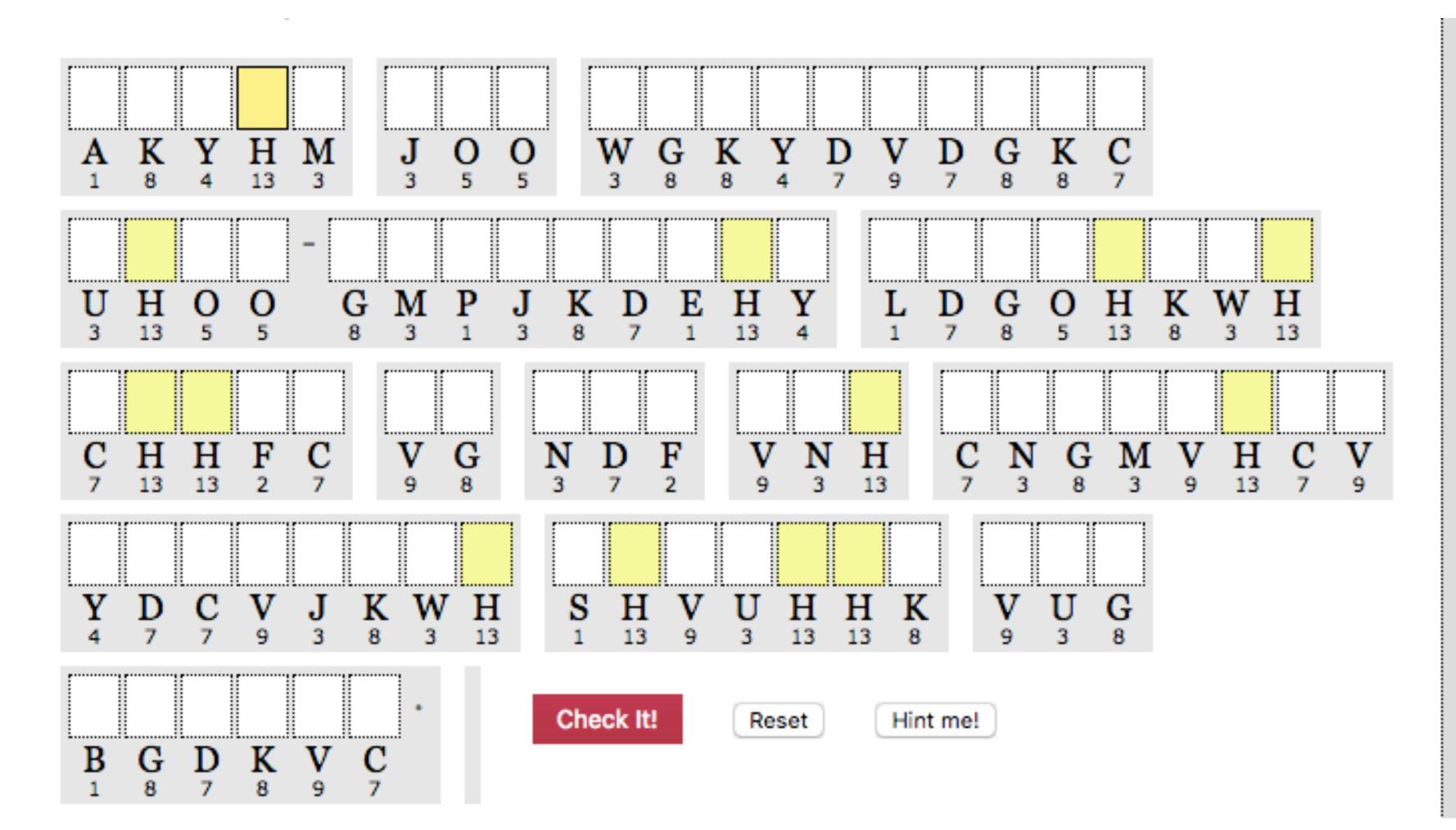
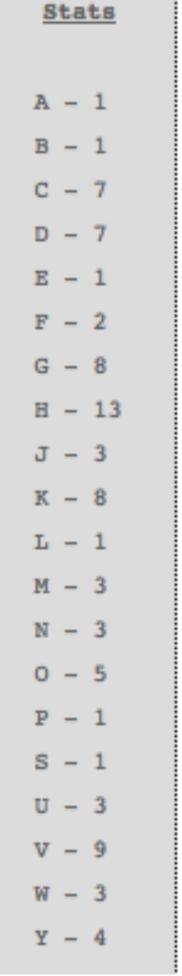


Image source: Wikipedia

Substitute each word / block

Caesar cipher

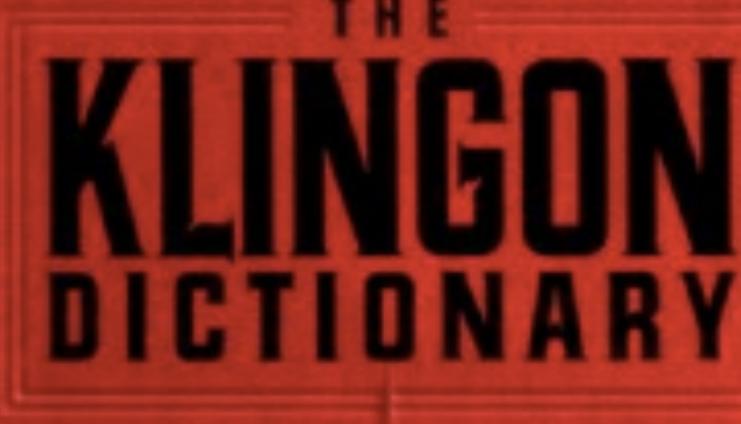




Image source: Wikipedia

- Encipher one character at a time
- Figure of cipher with key K = 3
 - one → lkb
 - two \mapsto qtl
- Problems?
 - If Eve observes C for a known P (even 1 known character), then she learns K
 - three \mapsto qeobb
 - Reuse leads to a "frequency attack"

cryptograms.org

One time pad


- Fix Caesar cipher by giving each chai
- XOR function measures whether 2 in
- OTP "masks" private message by app Caesar cipher independently to each
- XOR is a "lossless" function, so it is invertible (XOR is its own inverse)
- Drawbacks?
 - Key length == length of private message
 - No integrity: easy to manipulate enciphered text

				\oplus	0	1	
racter its own key				0	0	1	
puts are identical				1	1	0	
•	<u>XOR</u>	message	01	.10	011	0 1	L001
plying h bit		key	00	11	110	0 1	<u>110</u>
ΠΟΠ		cipher	01	.01	101	00)111
		cipher	01	.01	101	00)111
	XOR	key	00	11	110	0 1	<u>110</u>
ge		message	01	.10	011	0 1	L001

Slowenisch Rumänisch Russian Französisch - Deutsch **SOLLINS** Deutsch - Französisch

THE OFFICIAL GUIDE TO KLINGON WORDS AND PHRASES

By MARC OKRAND

THE

ENGLISH/KLINGON KLINGON/ENGLISH

Source: www.simonandschuster.com/ books/The-Klingon-Dictionary/ Marc-Okrand/Star-Trek/ 9780671745592

A crypto "Manhattan project"

Plain word	Code word
aba	nrq
abs	mbk
ace	ybd
act	WXV
add	jen
ado	hhg
aft	UXV
age	zmx
ago	dgs
aha	ase
aid	ktf
	• • •
zip	суи
Z00	dux
3-letter words	3 characters from random.o

- Codebook = random-looking permutation $R : \{0,1\}^{\mu} \rightarrow \{0,1\}^{\mu}$
 - Why is it important that all codewords are distinct?
 - So Alice can decipher her message
- Suppose society expends an enormous effort to make one public codebook R (and inverse)
- Can Alice protect her messages by encoding $P \rightarrow R(P)$?

codebook] **R** on some point X, then the value of R(X) is

-Jon Katz and Yehuda Lindell, Introduction to Modern Cryptography

"If an adversary Eve has not **explicitly queried** a [perfect] completely random... at least as far as Eve is concerned."

Properties of a public codebook R

_		
	Plain word	Code word
	aba	nrq
	abs	mbk
	ace	ybd
	act	WXV
	add	jen
	ado	hhg
	aft	UXV
	age	zmx
	ago	dgs
	aha	ase
	aid	ktf
		•
	zip	суи
	Z00	dux
	3-letter words	3 characters from random.o

- Privacy: R unintelligible to Eve?
 - No, Eve can use the codebook too
- Usability: *R* is simple for Alice?
 - No, *R* is too large for Alice to carry

New plan: everybody gets a codebook

Randomness \Rightarrow Unpredictability \Rightarrow Secrecy

Privacy of a personal codebook Y* = Π(X*) for Alice?

X	Y
aba	nrq
abs	mbk
ace	ybd
act	WXV
add	jen
ado	hhg
aft	uxv
age	zmx
ago	dgs
aha	ase
aid	ktf
• •	•
zip	суи
R	dux

- 1. Only Y^* (i.e., if Alice only uses Π once)
- 2. Y^* , plus many known (X_i , Y_i) pairs, say chosen at random
- 3. Above, plus many (X_i, Y_i) pairs for X_i that Eve chose
 - Hmm, let's enforce the restriction that $X_i \neq X^*$ (for now)
- 4. Above, plus Eve can choose the X_i one at a time, and adapt her choices based on the Y_i responses she receives
- 5. Above, plus Eve can also decipher Y_i of her choice

Question: can Eve recover Alice's private data X* given

Upshot: whether a cipher is "secure" depends on Eve's powers, and we want ciphers that withstand a strong Eve

Auguste Kerckhoffs' principles to protect communication

- 1. The system must be practically, if not mathematically, *indecipherable*
- 2. It should *not require secrecy*, and it should not be a problem if it falls into enemy hands
- 3. It must be possible to communicate and *remember the key* without using written notes, and correspondents must be able to *change or modify it at will*
- 4. It must be applicable to telegraph communications
- 5. It must be portable, and should not require several persons to handle or operate
- 6. Given the circumstances in which it is to be used, the system must be easy to use and should *not be stressful to use* or require its users to know and comply with a long list of rules

Source: A. Kerckhoffs, *La Militaire*, 1883

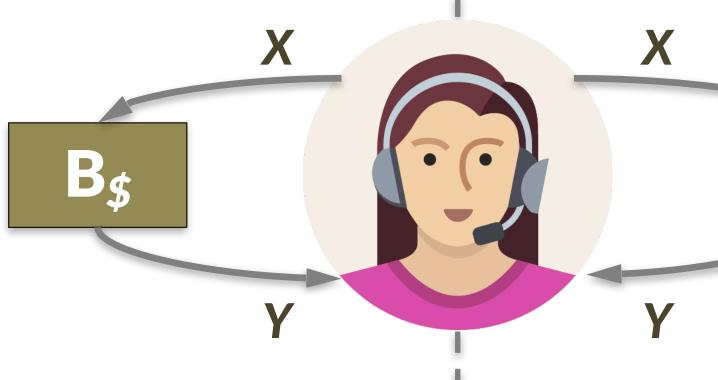
Does a private codebook Π satisfy Kerckhoffs' principles?

X	Y
aba	nrq
abs	mbk
ace	ybd
act	WXV
add	jen
ado	hhg
aft	UXV
age	zmx
ago	dgs
aha	ase
aid	ktf
•	• •
zip	cyu
П 200	dux

- Easy to remember Π ? \Rightarrow **X** Codebook is huge
- \Rightarrow X Creating Π is very difficult Easy to change Π?
- Stress-free to use Π ? \Rightarrow X Slow to search a big table, and cannot repeat input X

Let's ignore frequency attacks for now. Focus on addressing the other usability goals.

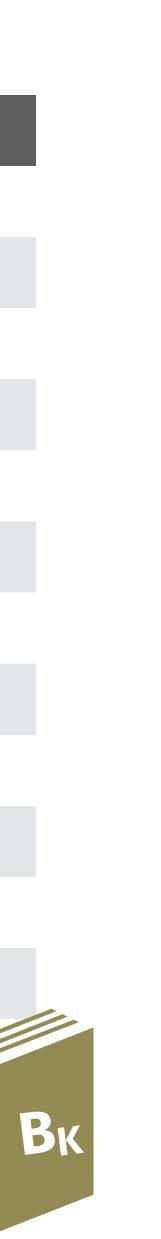
What we want: a block cipher


- Family of invertible permutations (i.e., codebooks), indexed by a secret key
- Forward direction called enciphering
- Backward direction called decipher
- Design goals
 - 1. **Simple** built from native CPU operations like XOR, cyclic shifts, and small table lookups so they are really fast to compute (think: throughput of 3-4 GB/sec)
 - 2. Makes no sense its design looks unpredictable (aka pseudorandom)
 - 3. **Simple to see why it makes no sense** we have simple, convincing arguments that the cipher is unpredictable (remember Schneier's law!)

$$ng \qquad X \longrightarrow B_{K} \longrightarrow Y$$

$$ring \qquad Y \longrightarrow B_{K}^{-1} \longrightarrow X$$

Pseudorandomness


- Goal: rows of truth table are "indepe
 - Suppose Eve adaptively makes q queri using a randomly chosen key K
 - We call B pseudorandom if Eve has a v predict B_κ(X*) for any unqueried X*

- Upshot
 - Good usability: Alice gets to use the sin
 - Good privacy: (almost) as hard for Eve

endent"
ies to codebook B _K
very small chance to
mple cipher B _K
to understand as Π

X	Y
aba	nrq
abs	mbk
ace	ybd
act	WXV
add	jen
ado	hhg
aft	UXV
age	zmx
ago	dgs
aha	ase
aid	ktf
• • •	•
zip	
Z00	

Strong pseudorandomness

B_K is strongly pseudorandom if every resource-bounded Eve can distinguish the real cipher from Π with very small probability ϵ

- Here, we provide Eve with access to both enciphering and deciphering
- In this class, we will only be concerned with strong pseudorandomness

