Lecture 3: Block ciphers

e See me after class if you haven't gotten a syllabus yet
« Homework 2 will be posted online later today, due Monday 2/3
» Textbook reading for this week: Serious Cryptography, chapter 4

 Slight change to my office hours: Thursday at 1-3pm from now onward



Recap: protecting data confidentiality at rest

ol small key K o K

\encrxgt C = E(K, P) )

private message P decrypt P = D(K, C)
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How can Alice encode messages so Eve can’t read them?

One-time character substitution Repeated block-by-block substitution

A|B|CIDIE|F

B
Il E Russian

A[B|C|D|E|F

Image source: Wikipedia
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Structure of 1 codebook

» Codebook = random-looking function Bk : {0,1}in - {0,1}out

 There exist a large number of codebooks, indexed by the key

» So far we have considered Input length == output length
e As a result, can insist that B Is Iinvertible

 Will explore other options later

aba nrg
abs mbk
ace ybd
act WXV
add jen
ado hhg
aft uxv
age ZmX
ago dgs
aha ase
ald ktf

cyu

dux
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Randomness = Unpredictability = Secrec
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No randomness = Predictability = Profit

RUSSIANS ENGINEER A
BRILLIANT SLOT MACHINE
g&EAT—AN ) GASINOS HAVE NO




Block cipher

e Family of invertible permutations (i.e., codebooks), indexed by a secret key

e Forward direction called enciphering X —> —>Y

e Backward direction called deciphering vy —> —> X

e Design goals

1. Simple - built from native CPU operations like XOR, cyclic shifts, and small table
lookups so they are really fast to compute (think: throughput of 3-4 GB/sec)

2. Makes no sense - its design looks unpredictable (aka pseudorandom)

3. Simple to see why it makes no sense - we have simple, convincing
arguments that the cipher is unpredictable (remember Schneier’s law!)



Security game

e Let [T1=a truly random, secretly chosen permutation (unknown to Eve

e Bk Is strongly pseudorandom If every resource-bounded adversary can
only distinguish the real cipher from T with very small probability €
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Today's plan

1. Formally state the guarantees we want from a block cipher
2. Design a block cipher from a single, public, “perfect” codebook

3. Instantiate a “good enough” approximation of a perfect codebook



Block cipher definition

Parameters
e 1 = block length = log(length of a book)
A = key length = log(# books in library)

Algorithms

Assume for now that there is a “good”
* KeyGen: Randomly choose a key Kof - method to generate a random key.

length A, often uniformly from {01} Will explore later in the course:

* Encipher: Given input X € {0,1}4, « How to generate random numbers

outputs Bi(X) > Y, where Y e {0,1}n too Crypto designs that withstand not-

. : so-great sources of randomness
* Decipher: Given Y € {0,1}+, outputs S -

Bk 1(Y) > X, where X € {01} too



Block cipher definition

Parameters Guarantees

 u = block length = log(length of a book) » Performance: All 3 algorithms are

» A = key length = log(# books in library) efficiently computable

* Correctness: For every K € {0,1}* and X

Algorithms e {01}y, it holds that By'(Bi (X)) = X

* KeyGen: Randomly choose a key K of

length A, often uniformly from {0,1}2 * (g, t, €)-strong pseudorandomness:

For every adversary E that makes < g

* Encipher: Given input X € {0,1}+, queries and executes in time < t,
outputs Bx(X) = Y, where Y € {0,1}» too  PrEBeBc = 1] = P{E™T" = 1]] < ¢
* Decipher: Given Y € {0,1}*, outputs over the choices of key K € {01} and

Bk 1(Y) - X, where X € {0,1}* too permutation 1:{0,1}* = {01}¢



Block cipher definition

What Is the largest time bound t
that we can hope to withstand?

Notational shorthand for this claim

EBKv BIEI ~

~(q.t,€)

EH, 1!

Guarantees

* Performance: All 3 algorithms are
efficiently computable

* Correctness: For every K € {0,1}* and X
e {01}y, it holds that By'(Bi (X)) = X

* (q, t, €)-strong pseudorandomness:
For every adversary E that makes < g
queries and executes In time <,

| Pr[EBeBx = 11— Pr[ERTT = 1] < e

over the choices of key K € {0,1}* and
permutation 7: {01} = {0,1}+



Limit to resource bound: brute force attack

e There is a large (but finite!) set of Game Searchsize Solved?
possible keys Oll' Connect 4 2743 v
e Brute force attack: Eve tests all keys Limit hold ‘em el v
against an observed (X, Y) pair Checkers 2767 v
Modern crypto 27128-2"256
* Ergo, best possible time bound t = 2A Chess 27133

No limit hold 'em 27465

e Two ways crypto can go bad
Go (19 x 19) 27568

* Obsolete: it Is computationally feasible
to run a brute force attack (e.g., DES)

°* Broken: there exists an attack that runs
faster than brute force (e.g., 2DES)



Pseudorandomness — Claude Shannon’s goals

* Confusion: uncertainty within each row of a codebook’s truth table

* Diffusion: uncertainty between rows of a codebook’s truth table

Source: Claude Shannon’s (many) papers

- Communication Theory of Secrecy Systems
- A Mathematical Theory of Communication
- A Mathematical Theory of Cryptography



Confusion: Uncertainty within a row

. Uncertainty of K = cannot > from Cryptodome.Cipher 1import AES
predict Y given X or vice-versa > key = 16 * “\x00'
> B = AES.new(key, AES.MODE_ECB)
* Tough even to correlate X and Y > B.encrypt(‘abcdefghijklmnop’)

‘c3af7laddfe4fcac6941286a76ddedc?’
e |deal: Prob[correlation] so small
that attacker is better off with a
brute force attack



Diffusion: Uncertainty between rows

 1bit AX » huge AY

e Partial knowledge of Input
doesn't help to learn output

* |deal goal is avalanching: each
bit of output depends on all
Input bits

* Note: confusion - diffusion

e Combine 2 functions

e Can be confusing but not diffusing

>

>

>

>

]

>

]

from Cryptodome.Cipher import AES
key = 16 * ‘\x00'
B

AES.new(key, AES.MODE _ECB)
B.encrypt(‘abcdefghijklmnop’)
c3af7laddfe4fcac6941286a76ddedc2’
B.encrypt(‘abcdefghijklmnoq’)
b5¢c180bcf80baae8ac0de2673370450c¢’

X4 X5

\ 4 \ 4



Today's plan

1. Formally state the guarantees we want from a block cipher
2. Design a block cipher from a single, public, “perfect” codebook

3. Instantiate a “good enough” approximation of a perfect codebook



Back to our “Manhattan project”

e Imagine soclety spends an enormous effort to make a single codebook
R and its inverse (so Alice can decipher her original message later)

e Can Alice use this codebook to protect her messages from Eve?
* NOTEve=can-4Se K 100

* Actually: Yes! Alice can add some small, private perturbation to R
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Flashback: The Data Encryption Standard (DES)

X

History

e 1972: NIST* seeks standard mechanism to protect
US federal gov “sensitive but unclassified” info K.

National Institute of
Standards and Technology
U.S. Department of Commerce

e Istrequest: Rejected all submissions

o 2nd request: accepted the Lucifer cipher by Y
Horst Feistel & others at IBM

Lengths of DES components

 Block length: 8 bytes
* Key length: 7 bytes

NSA changes: A cryptanalytic strength
V key length 8 = 7 bytes



Crypto war 1: key length

Question: how to increase key length
without making a new standard?

Solutions

e 2DES: Run DES twice
e 3DES: Run DES three times Kpgs’

KDES




Crypto war 1: key length

X
Question: how to increase key length
without making a new standard?
. E—
Solutions Koes
e 2DES: Run DES twice
Y

e 3DES: Run DES three times

» DESX (Rivest 84): mask input + output
Resulting key = 15 bytes

Benefits of DESX

e Fast: 1 block cipher call, quick re-keying

e Available: RSA Security had in their BSAFE software
since the late 1980s (before the rise of open source crypto software)

KMASK



Random permutation — block cipher

X

Question: What is the simplest possible
construction of a block cipher that has a

formal proof of security?

KDES KMASK




Random permutation — block cipher

X : X
Question: What is the simplest possible :
construction of a block cipher that has a :
formal proof of security? Kiack |
Even & Mansour 91: Rivest’s idea applies to :
any “public, random-looking permutation” Y Y

Theorems
1. Resulting block cipher i1s strongly
pseudorandom ...even If R 1s public

2. Construction is minimal in the
sense that nothing can be removed

o €<— €< >

’i
:



Proof of minimality

Construction Is minimal in the
sense that nothing can be removed.

X
r Kmask
Y

* Removing R leaves the identity function.

 Removing either @ allows adversary
to learn the key with one X/Y pair

and one query to R.

I
X

o €<— €< >

’i
:



Proof of pseudorandomness

Construction iIs strongly pseudorandom.

e Before the adversary @ makes any queries,
all choices of K, .5« are equally likely

e To reduce the set of possible Kj; sk, adversary must
find collisions between T and R, which are unlikely

e For each (X, Y) and (A, B) pair, label the keys (X ® A)
and (Y @ B) as bad; g queries yield only 2g2 bad keys

* All good keys are equally likely: they all fail to cause
collisions anywhere

e Same argument applies to the inverse direction

X
Kmask
Y
A =X ® Kmask
B =Y ® Kmask

i
:




Today's plan

1. Formally state the guarantees we want from a block cipher
2. Design a block cipher from a single, public, “perfect” codebook

3. Instantiate a “good enough” approximation of a perfect codebook



Advanced Encryption Standard (AES) Competition

* NIST competition held 1997-2000

« Required good performance for

— 8-bit smartcard
— 32-bit software

— Dedicated hardware

« Well-run competition

— Many candidates: 15 initially, 5 finalists

— Included 3 conferences

Winner: Riyjndael

— Authors: Joan Daemen, Vincent Rijmen

“Algorithms will be judged on the extent to
which their output is indistinguishable from
a random permutation on the input block.”

NI Rijndael
SN Serpent

General security

OV
OV
N
—
—

Simplicity to implement

Software performance 3 1 1 2 2
Smart card performance 3 3 2 1 1
Hardware performance 3 3 2 1 2
Design features 2 1 3 2 1
Total 16 14 13 10 9




Let’s build a block cipher!

Problems?

1. Hmm, how do we go about building
a single random permutation R? Kmask

2. Isn’t the truth table for R huge?



Let’s build a block cipher!

Problems?

1. Hmm, how do we go about building
a single random permutation R? Kround

2. Isn’t the truth table for R huge?

Solution to 1: multiple rounds

e Let's make life easier: what If we
make p that Is somewhat random?

e Then we can use the 3DES trick



Let’s build a block cipher!

Problems?

1. Hmm, how do we go about building
a single random permutation R?

2. Isn’t the truth table for R huge?

Solution to 1: multiple rounds

e Let's make life easier: what If we
make p that Is somewhat random?

e Then we can use the 3DES trick

e (Nitpicky detail: each round needs a
different key to thwart slide attacks)

&K

te

Ce

iy iy



Let’s build a block cipher!

Problems?

1. Hmm, how do we go about building
a single random permutation R?

2. Isn't the truth table for R huge?

Solution to 2: simple round function p
e Linear functions are very simple!

e Err, perhaps too simple; we could then
solve for the key

 We need non-linearity somewhere

e But let’s keep its truth table small

&

2

te
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Designing p: The substitution-permutation model

State at beginning of round

Permutation

State at end of round

© Substitution box (S-box)
Provides confusion, but at a cost

© Linear permutation
Provides global diffusion

€ AES-specific middle step

A linear operation that (somehow)
provides both diffusion and confusion




Rijndael, aka AES

InputX-@» Round, —»@ Q} Round, ‘@ Roundg —@»outputv
| |

keyo key, keys keys keyio

Key alternating structure Iterated round structure

e 128, 192, or 256 bit initial key 16 bytes of state

 Expand into r+1 round keys, each of « Total of r =10 to 14 rounds
which Is 128 bits long

no

ng

ni2

ng

n3

ns

10

ni4

n3

ni

nis

3 Invertible operations per round

 Invertible key schedule:
given key;, can compute

key;.q or key;. » Only S-box is nonlinear

— Final round is slightly different




AES components

16 byte state

Y Y

ShiftRows

A 4 Y.

MixColumns MixColumns

A 4 A 4

16 byte state

© SubBytes

Table lookup, one byte at a time

S|

0O 1 2 3 4 5 66 7 8 9 a b c d e
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30 01 67
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52 3b db6
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bc b6 da
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2t
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Of
£3
5d 19
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1f 4b bd 8b
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cO
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84
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1d Y9e
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99 2d 0f b0 54 bb 16




AES components

16 byte state

ShiftRows

MixColumns| ---

MixColumns

16 byte state

( Y Y Y ) 4

no | ng | ng | ni2 no | ng | ng | ni2
— >

ny | ns | ng [ nN13 | sShiftRows | N5 | N9 [ N3 | Ny
— > >

np | Ne | N1o | N4 nw | Nig | N2 | Ne
— < — >

n3 | n7 | ni1 | nNis nys | n3 | ny | np
\_ A AL N J \_

©) ShiftRows

Byte-wise transposition




AES components

16 byte state

ShiftRows

MixColumns| ---

MixColumns

16 byte state

02 03 01 01

01020301 | _

01010203 ™

03 01 01 02 no ([na)[ ns | mo
—t <>—
ns || no || n13 | nj
—t —
nio ||na|| n2 | ne
— —
nis & n7 | ni

€ MixColumns

Matrix multiplication in GF(256)



Block cipher design

Block cipher ¢ Key alternation < Iterated rounds ¢ Substitution-Permutation

X X X

Input state
K()_’%
K S S S S
K1_’$
Y . Permutation
Y 3 |
- R
Middle |...| Middle
K _é Output state




Assertion: AES is pseudorandom. Why?

e Theoretical justification:
Will prove that it withstands certain categories of cryptanalytic attacks

 Empirical justification:
It has survived a 4 year competition and 2 decades of use afterward



Next time: block ciphers = encryption

Block cipher = family of codebooks Mode of operation = variability

e Each key K yields a different codebook Bk e Allows long message with short key

» Fast to compute: throughput of ~3-4 GB/sec e« Thwarts frequency analysis

or




