Lecture 4: Encryption via enciphering

« Homework 2 due Monday 2/3
» Textbook reading for this week: Serious Cryptography, chapter 4

o | will try to post lecture slides before class (no promises though)

Recap: protecting data confidentiality at rest

ol small key K o K

\encrxgt C = E(K, P))

private message P decrypt P = D(K, C)

227

Recap: block cipher

» Family of finite permutations (i.e., codebooks), indexed by a secret key

e Forward direction called enciphering —>m—>v

S B md

e Bk Is strongly pseudorandom if every resource-bounded adversary can
only distinguish the real cipher Bk from M with very small probability €

I
I
I
L A —iLE
g
I
I

e Backward direction called deciphering

S-box

S-box

S-box

ShiftRows

ShiftRows

InputX—'@ﬂ

kGYo

MixColumns

key,; keysg

MixColumns

ﬁ» ShiftRows —@» output Y

keys keyio

Key alternating structure

e 128, 192, or 256 bit initial key

 Expand into r+1 round keys, each of

which iIs 128 bits

long

 Invertible key schedule:
given key;, can compute

key;_1 or key;.

Iterated round structure

16 bytes of state
Total of r =10 to 14 rounds

Recap: Rijndael, aka AES, is a concrete block cipher

no

ng

ni2

ng

n3

ns

10

ni4

n3

ni

nis

3 invertible operations per round

— Final round is slightly different

Only S-box Is nonlinear

Recap: brute force attack

e There is a large (but finite!) set of

possible keys (mas

* Brute force attack: Eve runs a for
loop over all keys, checks if Bi(X) = Y

e Ergo, best possible time bound t = 22

e TWO ways crypto can go bad

* Obsolete: it Is computationally feasible
to run a brute force attack (e.g., DES)

* Broken: there exists an attack that runs
faster than brute force (e.g., 2DES)

Game
Connect 4

Limit hold 'em
Checkers
Modern crypto
Chess

No limit hold 'em
Go (19 x 19)

Search size
2743

2747

2767
27128-2"256
27133

2™465

27568

Solved?

v
v

v

How to think about really large numbers

Converting to base-2 Speed of cryptography on modern computers

e Running AES: (231 cycles/_) [(10 cycles/) = 227 aes[

210 = 103 (kilo)
220 ~ 106 (mega) * S0 about 252 °ps/ .., given that 1 year = 225 sec
230 =~ 109 (giga) * Entire bitcoin network: about 267 ops/ ..
240 ~ 1012 (tera) Hash Rate "
113.2 EH/s
250 = 1015 (peta)
260 = 1018 (exa)

A /
", .) / W g Ve VN "’\'v’\’/‘ it
N\ /NS \ /
/ \/ J
v \/ \ — /

2019-01-29 blockchain.info/charts 2020-01-27

Difficulty of attacking crypto

Eve’s search space Time with laptop Time with bitcoin network
(252 ops/yr) (267 ops/sec)

220 (your homework) 0.01 second ~instantaneous

256 (DES brute force) 24 = 16 CPU core-years much less than 1 second

280 228 = 256 million CPU core-yr 213 seconds =2 hours

2128 (AES-128 brute force) 276

64 sextillion CPU core-yr 263 sec = 238 year = 100 billion yr
233 x 243 (cf. age of universe = 14b years)
8 trillion CPU core-yr

for each person on earth

2256 (AES-256 brute force) (about the energy of the sun)

Crypto in this course

Elegant
protocols

Utilitarian
tools

I Random(ish) ﬁ
| permutations |

Alice’s confidentiality + integrity goals

C = Enc(K, P) > 1
L

e Data privacy: Eve cannot learn P
(today)

e Data authenticity:
If Eve tampers with C, then
Alice can detect the change

o Entity authenticity:
future Alice knows that she
previously created C

“Confidentiality xor authenticity is not possible.
If you don't have both, often you don't have either.”

—-Prof. Matthew Green, Johns HopRins

Does a cipher give us confidential communication?

encipher Y = BK(X> "
B

* First reaction: Yes! The cipher
transforms X in a confusing way

e Full answer: not quite, we have 2 issues

e Usability: Block cipher only supports
messages where |X| = block length

e Security: Vulnerable to frequency
attacks if Alice enciphers the same
block twice

AKYHM JOO WGKYDVDGIKTC
1 8 4 13 3 = oD

8888888888

UHOO GMPJKDEHY LDGOHI KWH
3 13 5 5 8 3 1 3 8 7 1 13 4 1 7 8 5 13 8 3 13

CHHFC VG NDF VNH CNGMVHCYV
7 13 13 2 7 s 8 3 7 2 5 3 13 7 3 8 3 9 13 7 9

YDCVJKWH S HVUHHIK VUG
4 7 7 & 3 8 3 13 1 13 9 3 13 13 8 s 3 8

888888

Supporting longer messages

Def. A mode of operation connects multiple calls to a block cipher (with one key K)

One simple mode: process each block of the message independently

This is called Electronic Codebook (ECB) mode

M M, M,
| |
Y Y
C C

1
|
Y
C; 2 P

ECB mode = sad Linux penguins

Raw image of Image after What we want
Linux penguin ECB mode encryption to do

What if message blocks don’t repeat?
key K key K

encode C; = By(P;) > "
P -

decode P; = By (C))

private data
Py, P, ... P,

227

What if message blocks don’t repeat?
key K key K

encode C; = 1(P;) > '
P

decode P; = 1T-1(C;)

private data
Py, P, ... P,

How do we guarantee that
22?2 message blocks don’t repeat?

Lessons learned

* Randomness matters: We can confuse Eve! pri V?te P
Just need to design a mode of operation that Y
guarantees each enciphered block is unique. ., y— m

* Definitions matter: Arsument leverages the l

concept that a block cipher “looks like” a ciphertext C
random permutation from Eve’s point of view.

Lessons learned

* Randomness matters: We can confuse Eve! pri v?te P
Just need to design a mode of operation that Y
guarantees each enciphered block is unique. o -, y—= m

* Definitions matter: Arcument leverages the l

concept that a block cipher “looks like” a ciphertext C
random permutation from Eve's point of view.

Cipher block chaining (CBC) mode

P P4
|

/’ N CBC BK -

N = random string
for variety :
or privac
(sometimes called ¢ for p / N C, C, C;
an initialization
vector or |V)

K = random string

CBC decryption

Apple's Common Crypto Library Defaults
to a Zero IV if One is not Provided

Today I was writing some guidelines about generating keys for mobile applications at work. While

providing code examples in Java and Obj-C for AES encryption I happened to look at Apple's Common

Crypto library . While going through the source code for CommonCryptor.c, I noticed that IV is
commented as /x optional initialization vector *x/ . This makes sense because not all ciphers use

[V and not all AES modes of operation (e.g. ECB mode). However; if an IV is not provided, the library
will default to a zero IV.

You can see the code here inside the function ccInitCryptor (search for defaultIV) source.
CC_XZEROMEM resets all bytes of IV to zero (that is 0x00):

static 1 CCCryptorStatus
(CCCryptor *ref, const xkey, key len, const xtweak_key, const

size_t blocksize = ccGetCipherBlockSize(ref);

uint8_t defaultIV[blocksize];

if(iv == NULL) {
CC_ XZEROMEM(defaultIV, blocksize);
iv = defaultlV;

rn kCCSuccess;

While I am told this is probably common behavior in crypto libraries, I think it's dangerous. I ended
up putting a comment in code examples warning developers about this behavior. So, heads up ;)

Source: parsiya.net/
blog/2014-07-03-apples-
common-crypto-library-
defaults-to-a-zero-iv-if-
one-is-not-provided/

