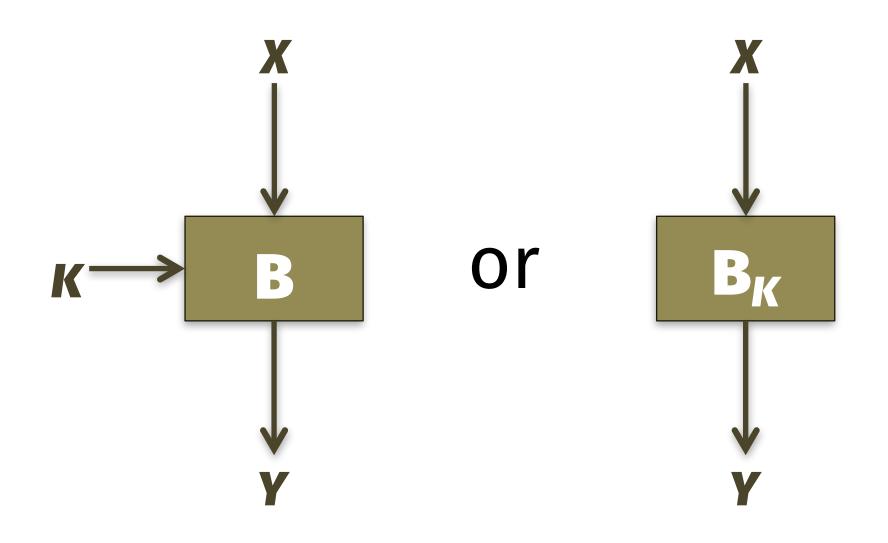
Lecture 5: Encryption via enciphering (part 2)

- Homework 3 will be posted later today, due Monday 2/10
- Academic conduct code: please read the syllabus + Piazza post 70
- Textbook reading for this week: Serious Cryptography, ch. 4, pg. 13-23

Our plan: block ciphers \rightarrow encryption

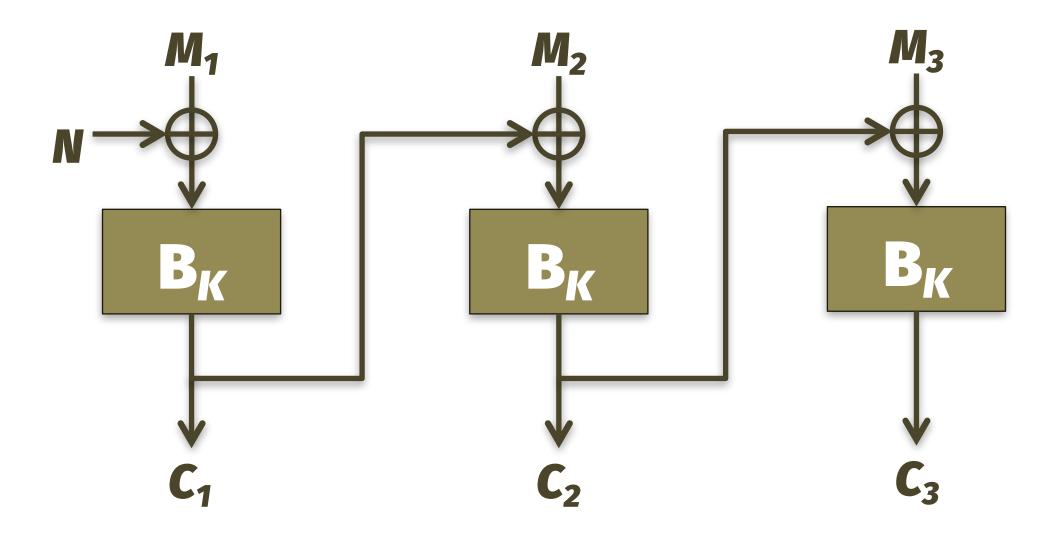
Block cipher = family of codebooks

- Each key K yields different codebook B_K
- Fast to compute: throughput ~3-4 GB/sec

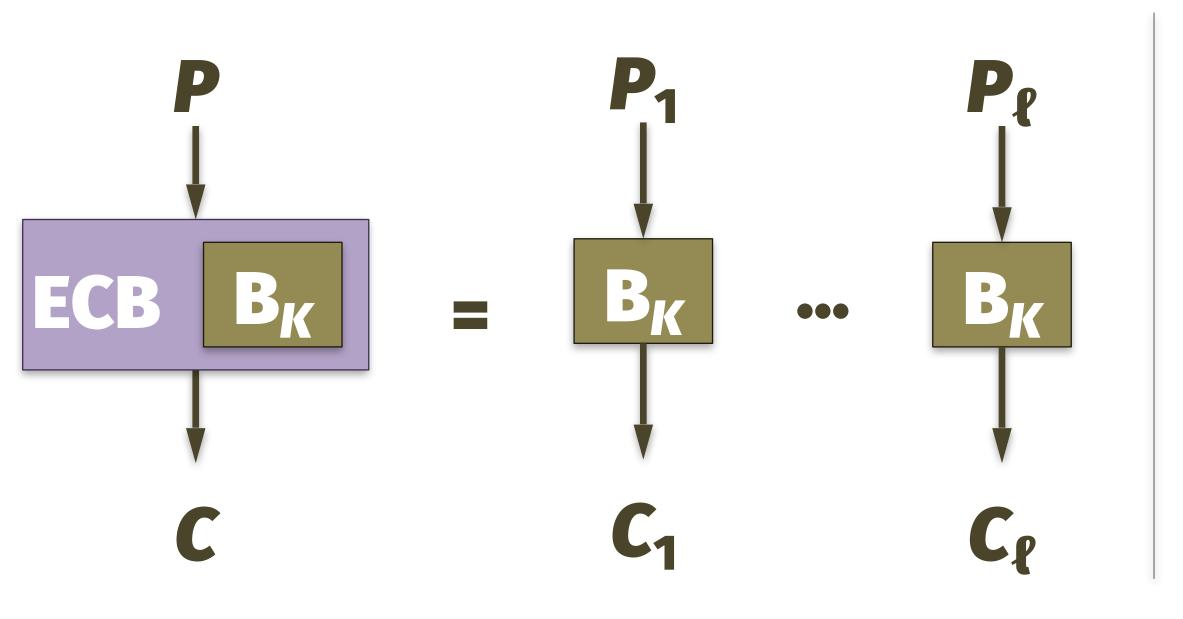


Mode of operation = variability

- Allows long message with short key
- Thwarts frequency analysis

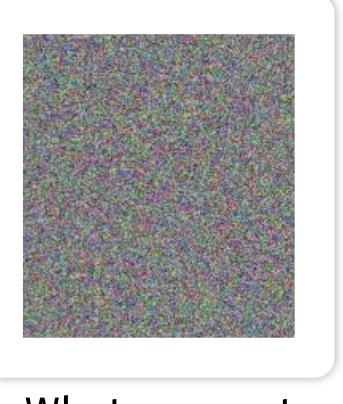


Bad attempt: Electronic Codebook (ECB) mode



Raw image of Linux penguin

Image after ECB mode



What we want from encryption

What if message blocks don't repeat?

key K

encode $C_i = B_k(P_i)$

private data $P_1, P_2, ..., P_\ell$

Suppose for now that |P| is a multiple of the block length

decode $P_i = B_K^{-1}(C_i)$

277

 $\bullet \quad \bullet \quad \bullet$

What if message blocks don't repeat?

key K

encode $C_i = \Pi(P_i)$

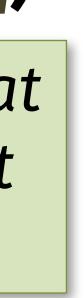
private data P₁, P₂, ... P_ℓ

decode $P_i = \Pi^{-1}(C_i)$

How to guarantee that message blocks don't repeat?

777

• • •



Recap: CBC mode

CBC

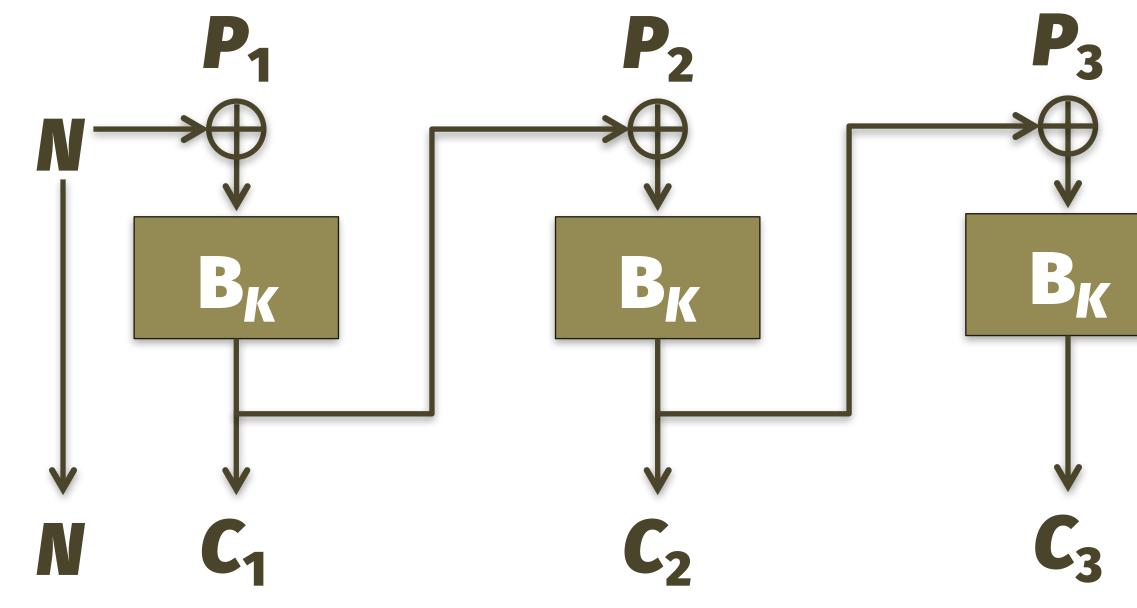
N = random string for variety (sometimes called an initialization vector or IV)

Ν

\ K = random string for **privacy**

B

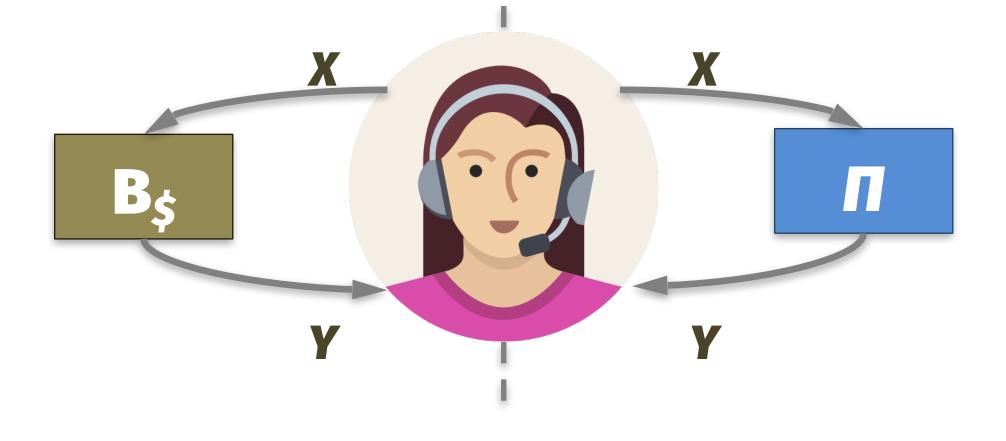
Seems like a good encryption scheme. But how do we prove this? In fact, what does "good" even mean?



A new type of unpredictability

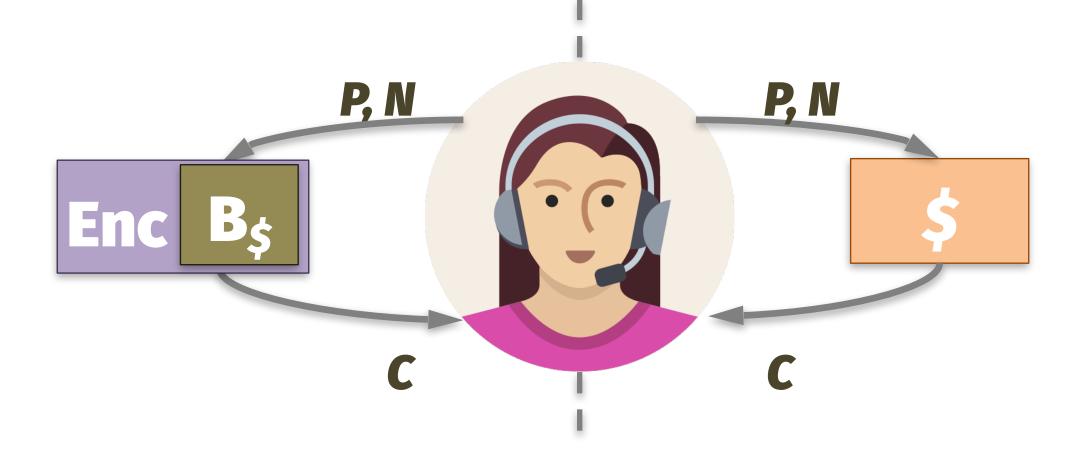
<u>Block cipher</u>

 $B_{\mbox{\scriptsize K}}$ looks like a truly random function, meaning nobody can tell them apart



Encryption scheme

Similar, except even making the same request twice yields different answers



Defining symmetric encryption

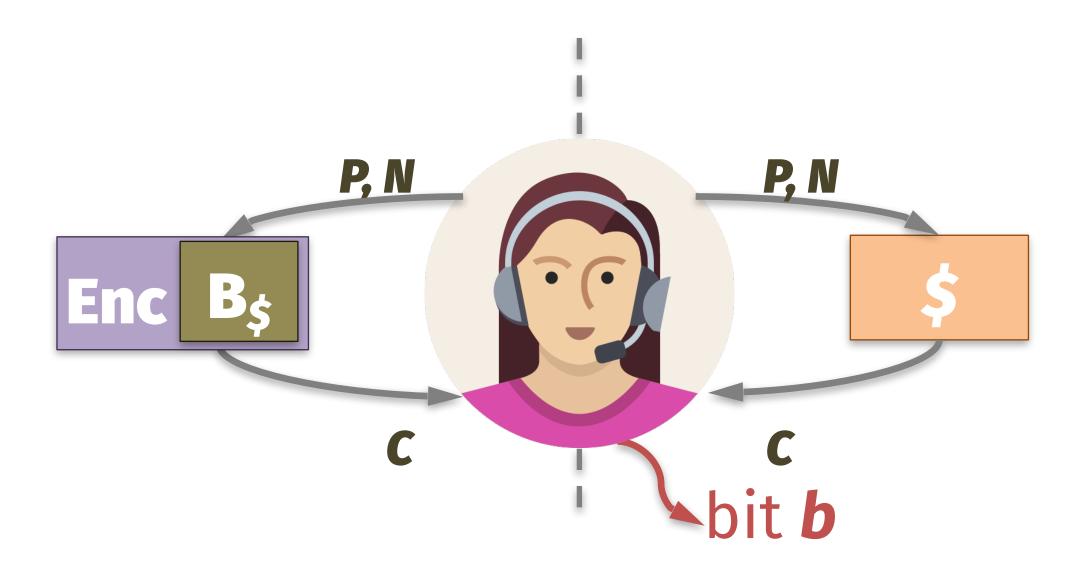
<u>Algorithms</u>

- **KeyGen:** choose key $K \leftarrow \{0,1\}^{\lambda}$
- **Encrypt**_K ($P \in \{0,1\}^{\rho}$, N) $\rightarrow C \in \{0,1\}^{\gamma}$
 - Must be randomized with $\gamma \ge \rho$
- **Decrypt**_K ($C \in \{0,1\}^{\gamma}, N$) $\rightarrow P$

<u>Constraints</u>

- **Performance:** All algorithms are efficiently computable
- Correctness: For every K, Enc_K and Dec_K are inverses
- Security: ???

Pseudorandom under chosen plaintext attack (IND\$-CPA)

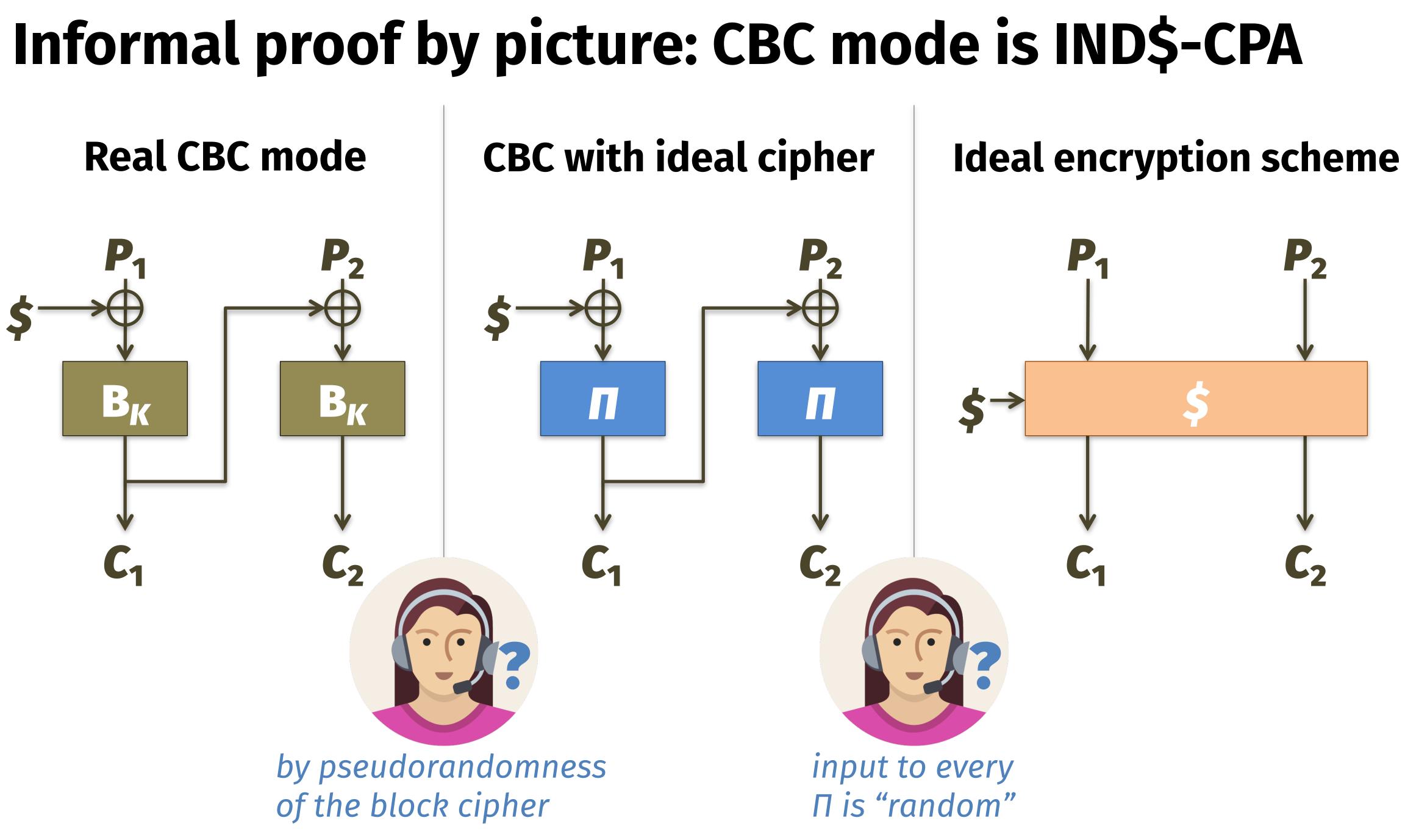


For every adv A with runtime $\leq t$ and queries totaling $\leq q$ blocks,

$$A^{Enc_{\$}(-,-)} \approx_{(q,t,\varepsilon)} A^{\$(-,-)}$$

Two variants

- Standard: Eve doesn't choose N, instead it is chosen randomly
- Nonce-respecting: Eve chooses N, but each choice must be distinct



Encryption in practice

<u>bu.edu</u> homepage (2017)

Obsolete connection settings

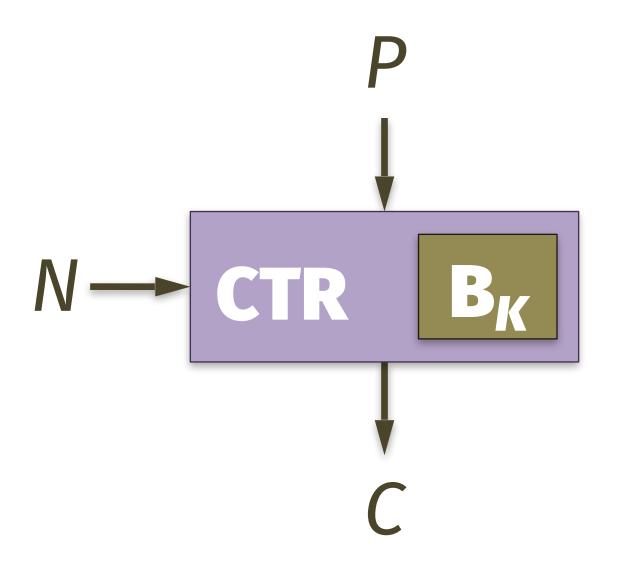
The connection to this site uses TLS 1.0 (an obsolete protocol), RSA (an obsolete key exchange), and AES_256_CBC with HMAC-SHA1 (an obsolete cipher).

www.amazon.com

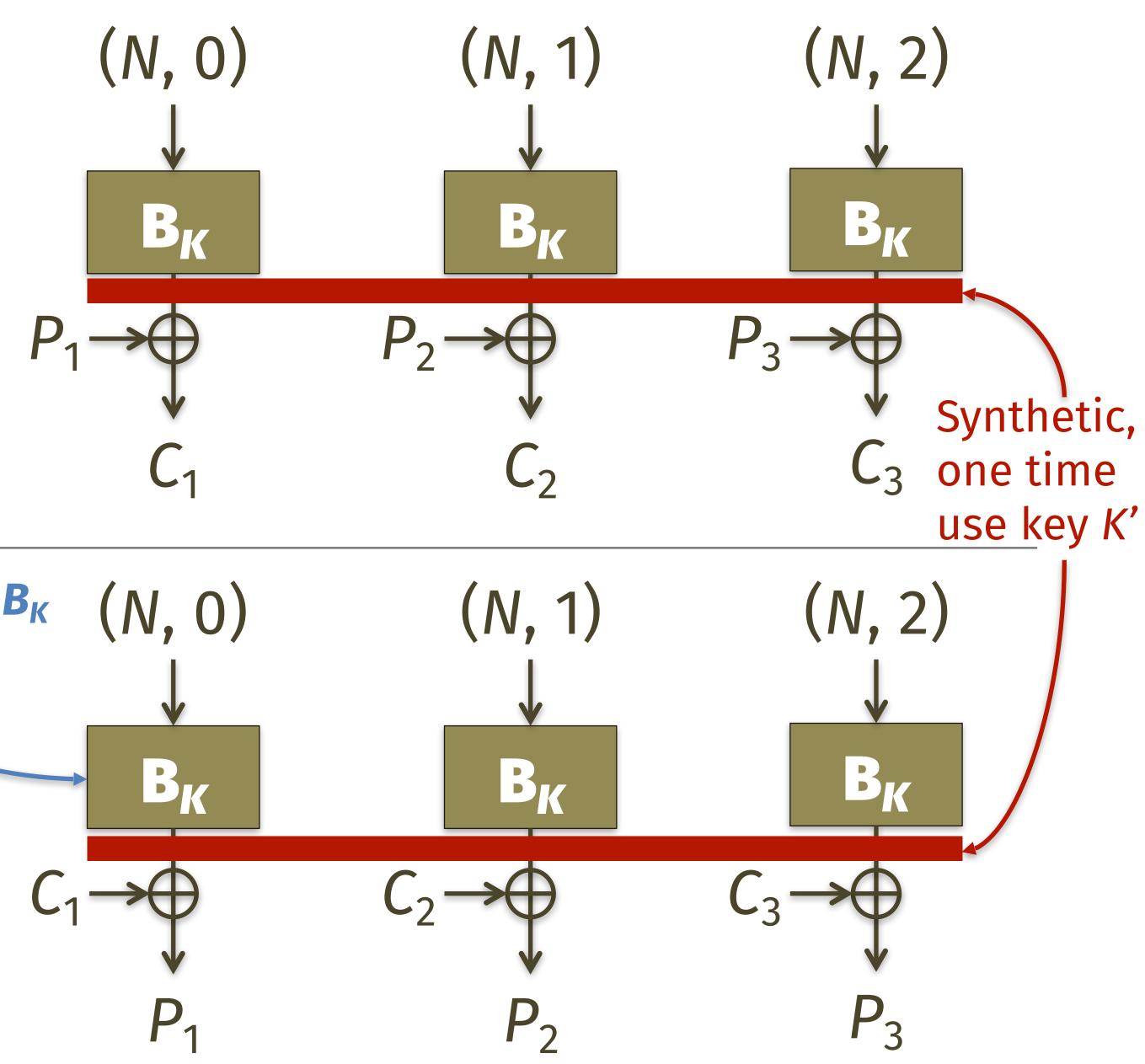
Secure connection

The connection to this site is encrypted and authenticated using TLS 1.2 (a strong protocol), ECDHE_RSA with P-256 (a strong key exchange), and AES_128_GCM (a strong cipher).

Counter (CTR) mode



C N V V CTR-1 B_K CTR-1 uses B_K in forward direction!

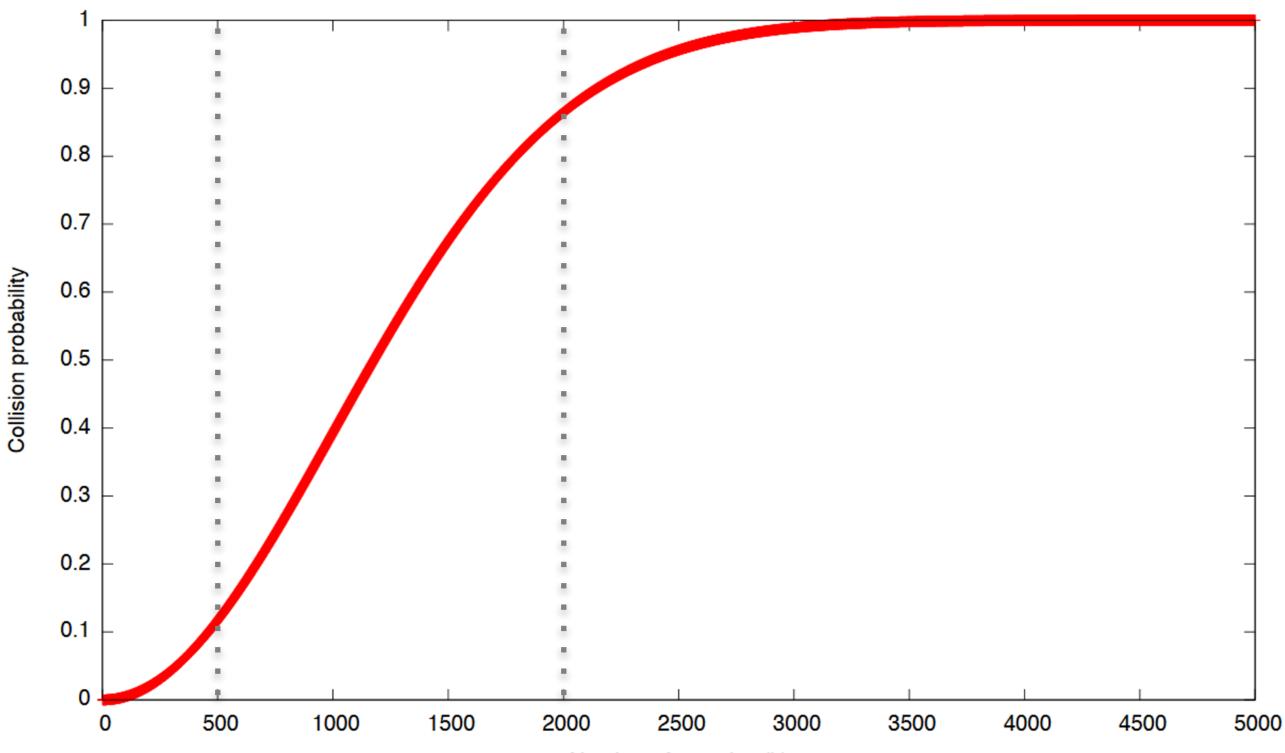


Issues to consider with CTR mode 96 bits 32 bits 1. Tradeoff between the lengths of **N** and **ctr**

- 3. How to prove that CTR satisfies IND\$-CPA? later today
- 4. What to do if **N** is accidentally repeated? will re-visit in a few weeks

2. How do we choose **N** if the parties are stateless? — *choose randomly, rely on birthday bound*

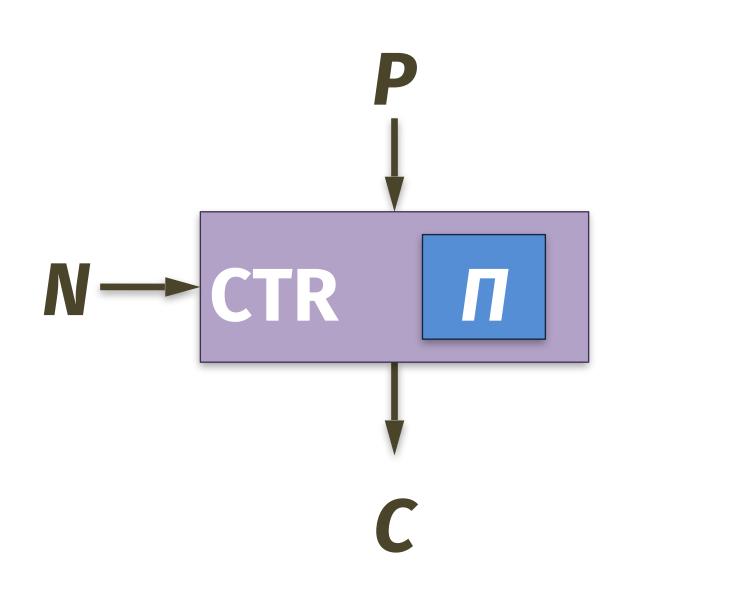
Birthday bound

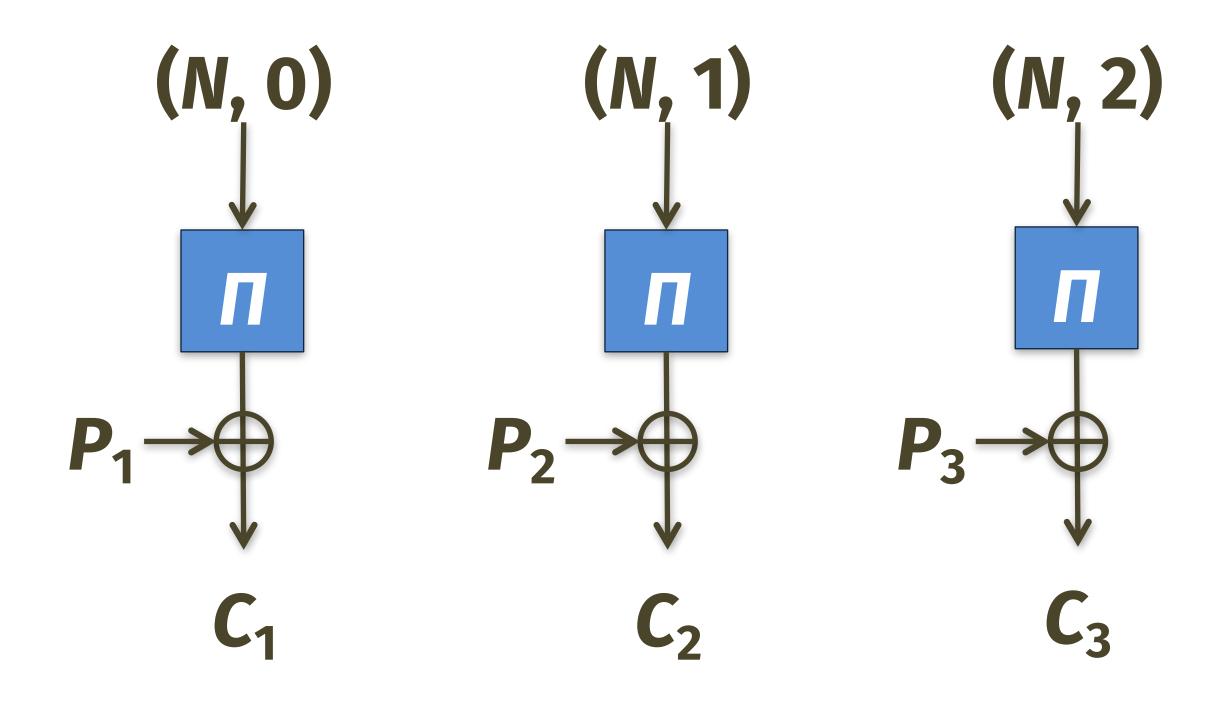


- When drawing with replacement from set of size L, *E*[# items to draw until first collision] $\approx \sqrt{\frac{\pi}{2}L} \approx 1.25\sqrt{L}$
- The distribution of M is tightly concentrated around its expected value

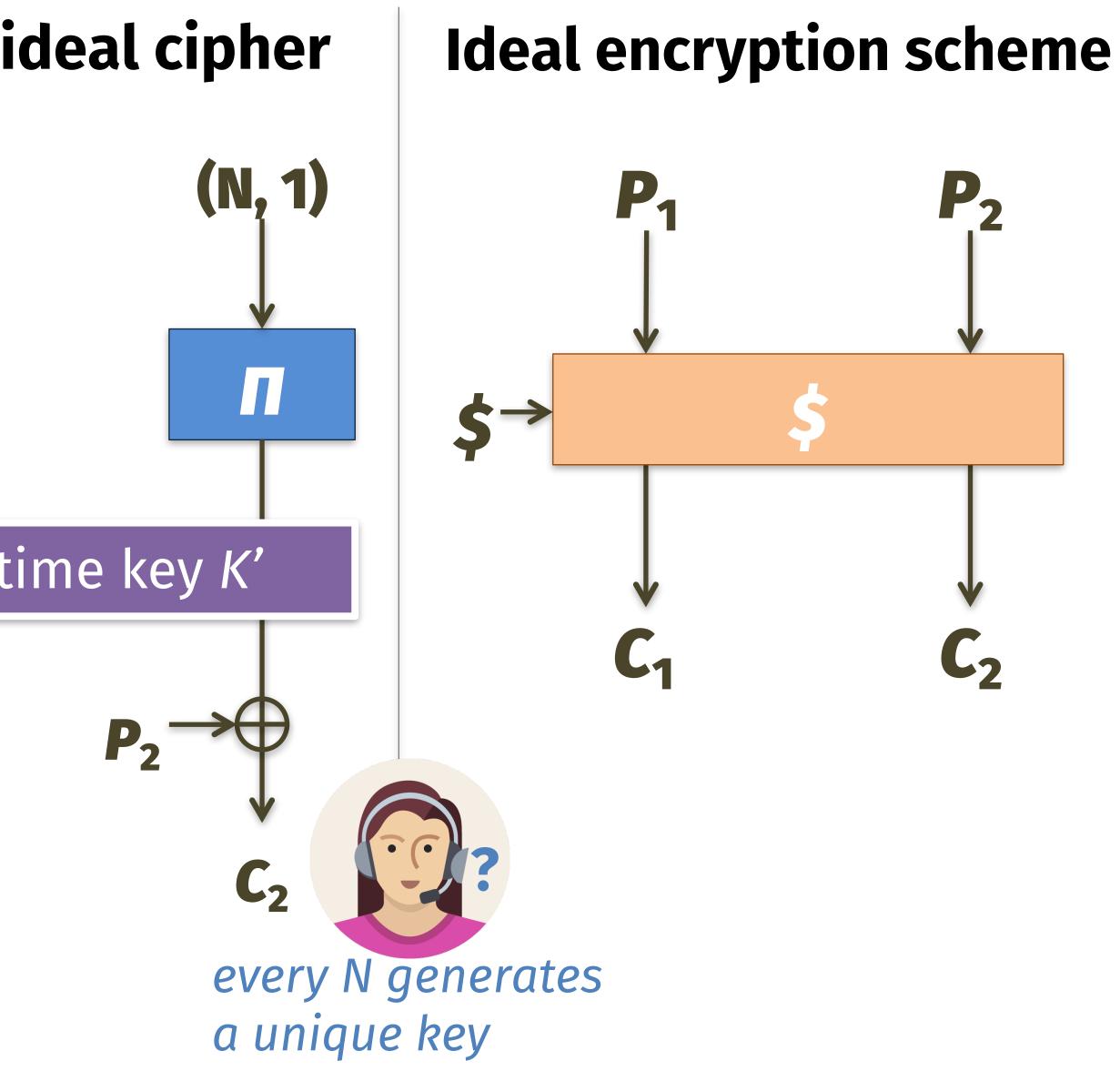
Number of samples (k)

Observation: CTR mode with $\Pi \Rightarrow$ **one time pad**





Informal proof that CTR mode is IND\$-CPA **CTR with ideal cipher Real CTR** (N, O)(N, O) (N, 1) (N, 1) P₁ B_K B_K One time key K' One time key K' **P**₁ P_2 P_2 C_2 C_2 by pseudorandomness every N generates of the block cipher



Toward a mathematically rigorous proof

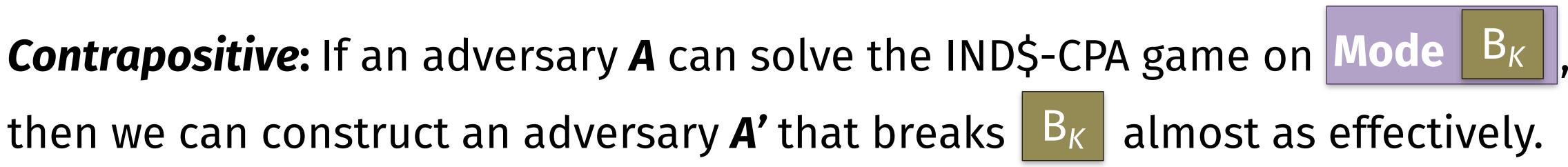
<u>If we begin with:</u>

a block cipher B_K that is $(q_{\rm B}, t_{\rm B}, \varepsilon_{\rm B})$ pseudorandom

then we can construct an adversary **A'** that breaks

Then we can construct:

Mode B_K symmetric key enc scheme that is $(q_c, t_c, \varepsilon_c)$ indistinguishable from pseudorandom under a chosen plaintext attack



If we begin with:

Adversary **A_{CTR}** who can distinguish

with probability > $\varepsilon_{\rm C}$ given time $t_{\rm C}$ and queries that total $q_{\rm C}$ blocks of data

Then we can construct:

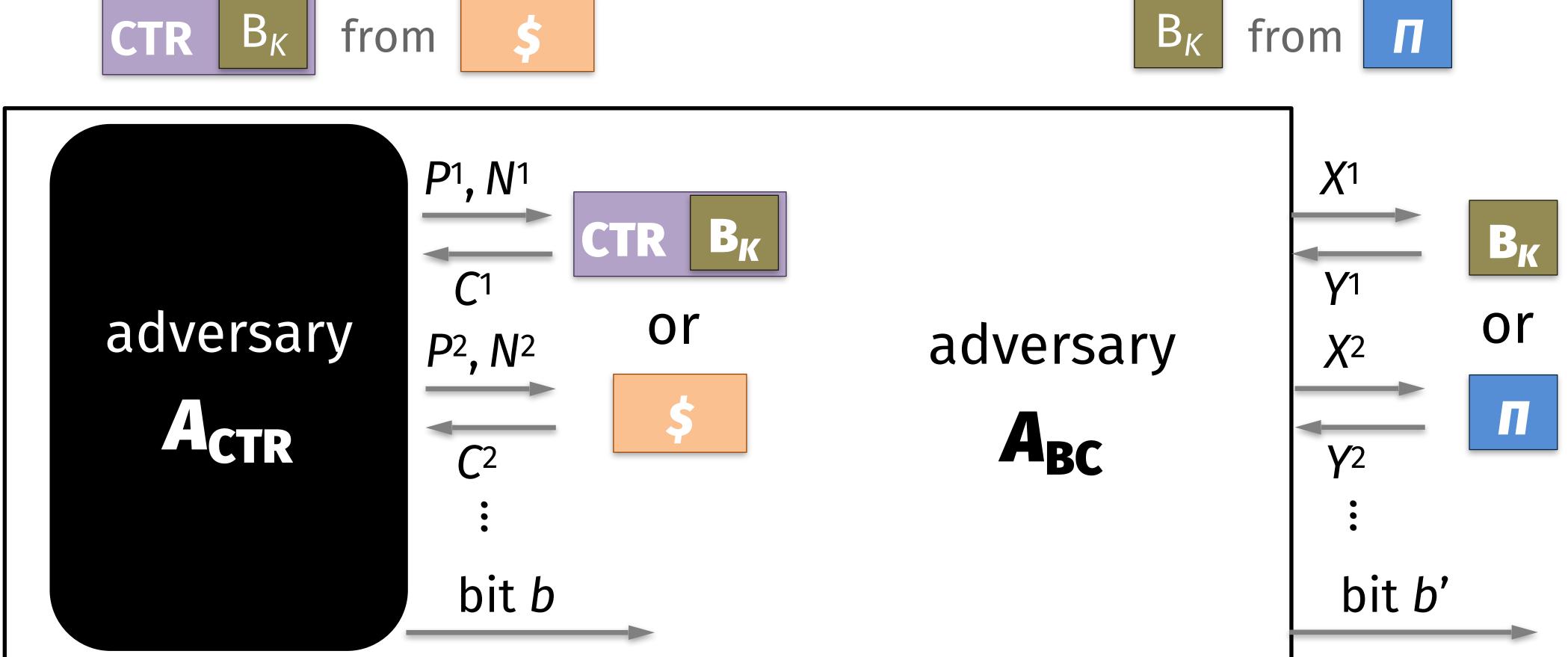
Adversary **A**_{BC} who can distinguish

with probability > $\varepsilon_{\rm B}$ given time $t_{\rm B}$ and a total of $q_{\rm B}$ queries

Formal CTR mode reduction

If we begin with:

Adversary **A**_{CTR} who can distinguish

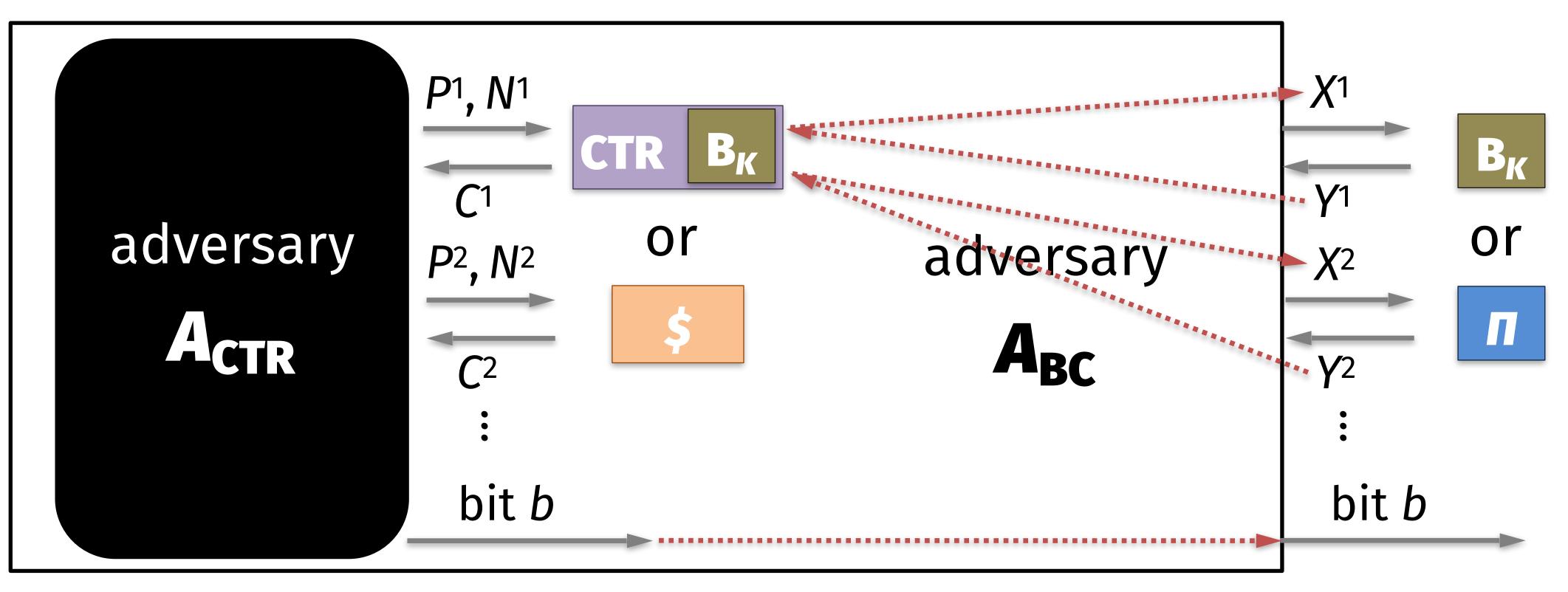


Then we can construct:

Adversary **A**_{BC} who can distinguish

How A_{BC} operates

Step 1:Step 2:StWait for A_{CTR} Query A_{BC} 's ownCoto output aoracle on (N,0), (N,1), re(P, N) pair..., (N, |P|-1)th

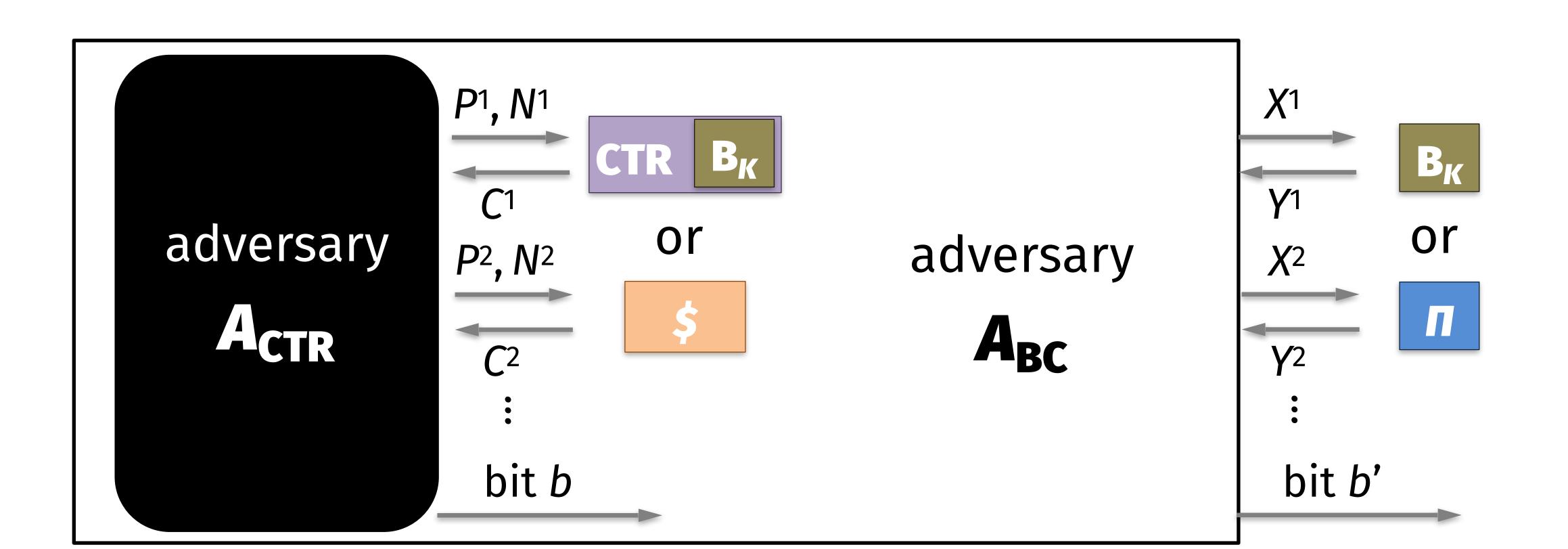


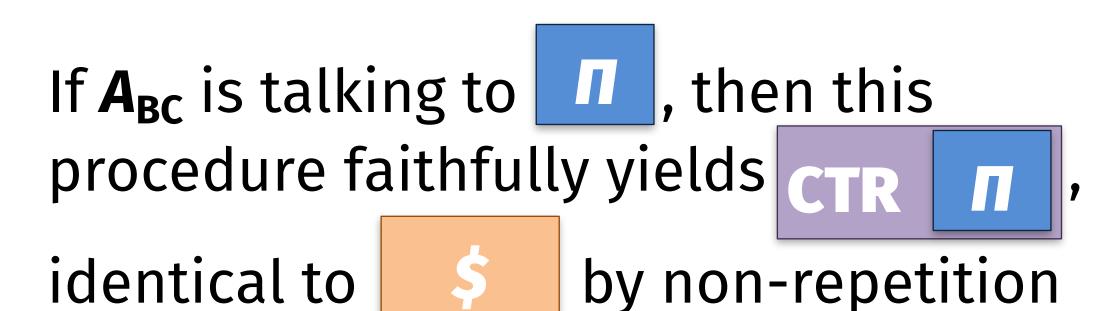
Step 3: Concatenate response blocks, then xor with P *Step 4:* Repeat

Step 5: Output the same bit as **A_{CTR}**

Why this reduction works

If **A**_{BC} is talking to **B**_K, then this procedure faithfully yields Bĸ CTR





Our final result

If we begin with:

Adversary A_{CTR} who can distinguish

with probability > ε_c given time t_c and queries that total q_c blocks of data

Then we can construct:

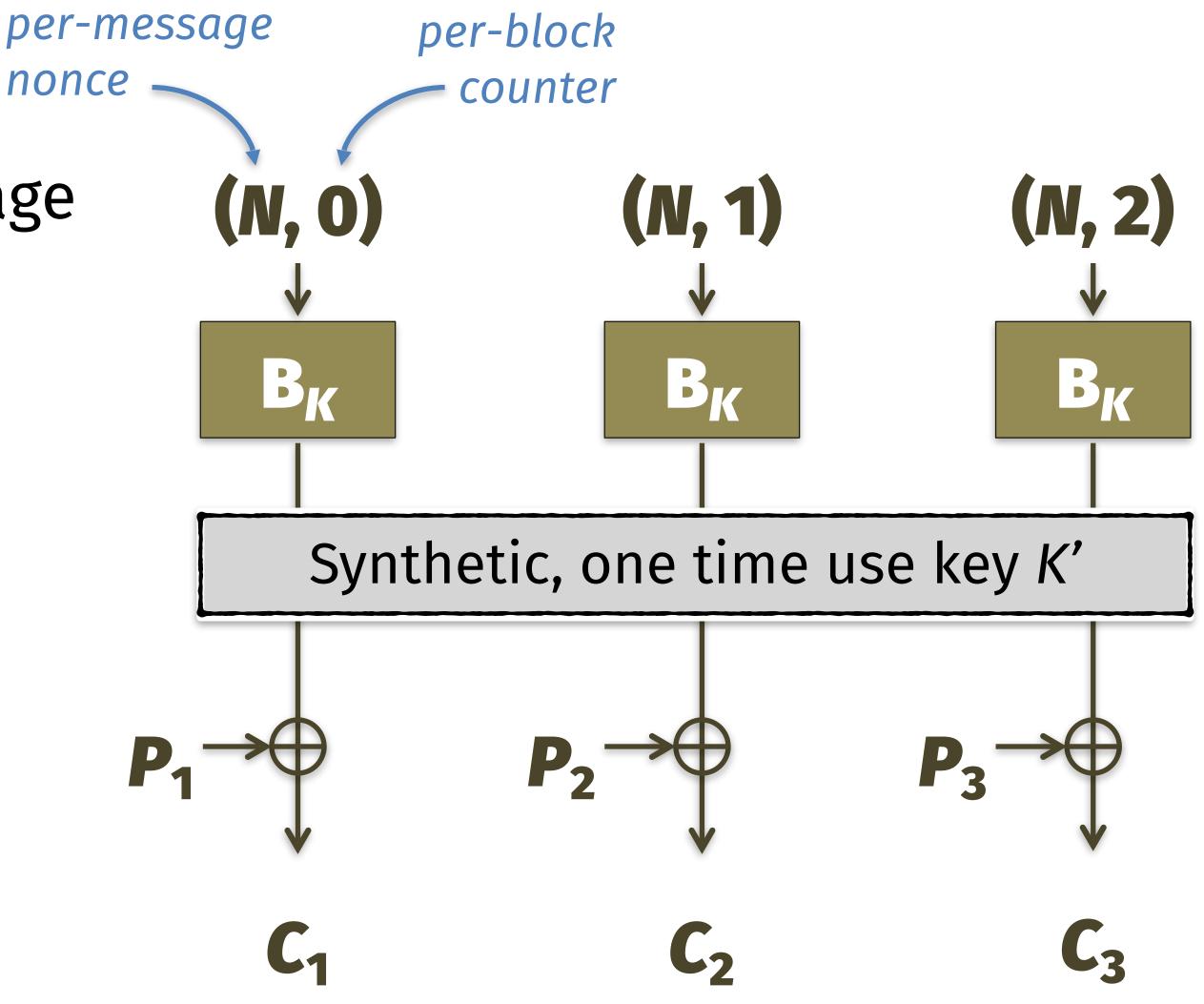
Adversary A_{BC} who can distinguish

with probability > ε_c given time $t_c + q_c$ and a total of q_c queries

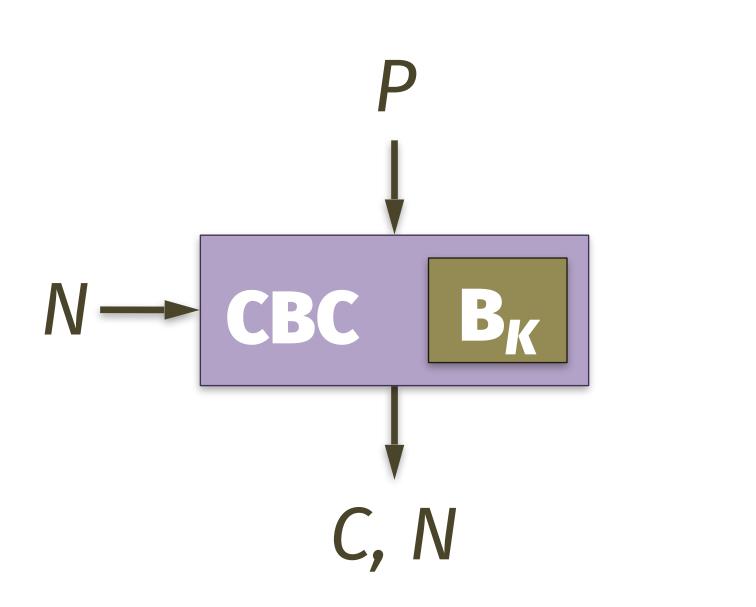
What if |P| isn't a multiple of the block length?

nonce

- CTR mode produces a keystream to XOR with message
- If you don't need the full keystream, just discard it
- No need to pad in CTR

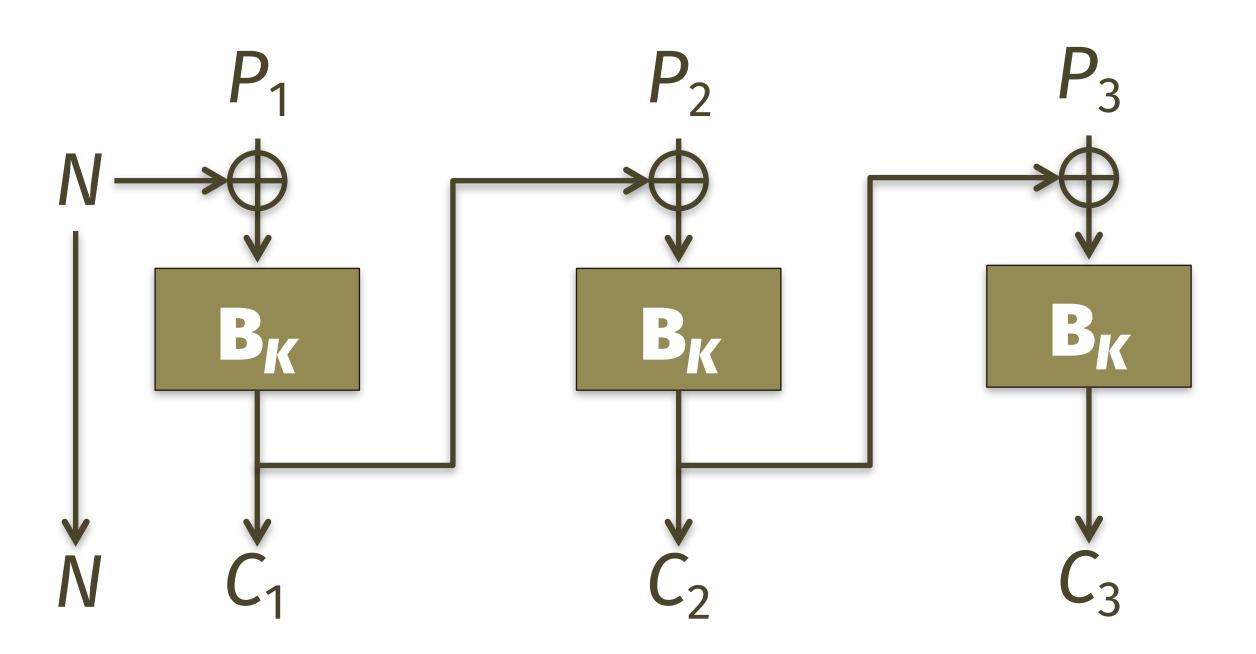


Padding in CBC?



needs two inputs that are 1 block long

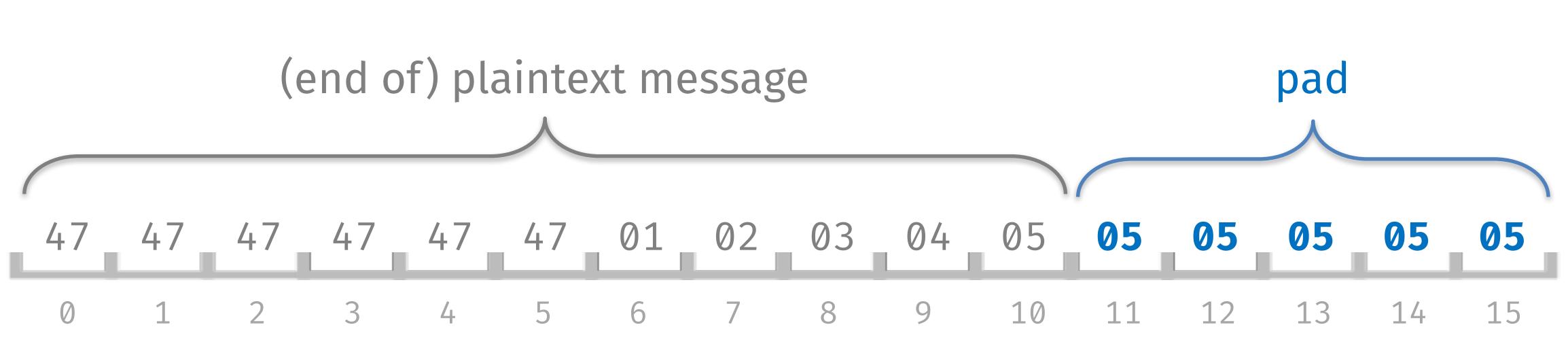
• Seems like padding the final block *P*₃ is necessary...



• Not as simple: B_K requires exactly 1 block of text, which means the XOR

PKCS #7 padding

Padding adds M whole bytes, each of value M

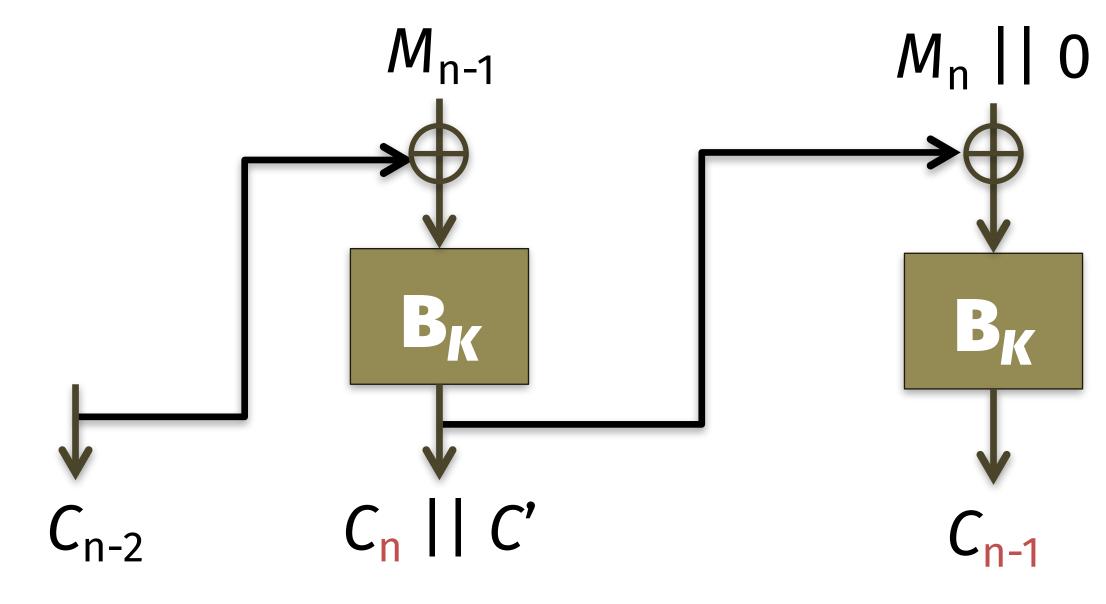


What if the message is already a multiple of the block length?

Ciphertext stealing for CBC

How to encrypt

- Pad the final block with 0s (on its own, this is not invertible)
- Output the entire final block
- For the second-to-last block, only output the first $|M_n|$ bytes



Ciphertext stealing for CBC

How to encrypt

- Pad the final block with 0s (on its own, this is not invertible)
- Output the entire final block
- For the second-to-last block, only output the first $|M_n|$ bytes

How to decrypt

- First decrypt the last block
- Data after the first $|M_n|$ bytes == C'
- Now can decrypt the penultimate block

