
Lecture 5: Encryption via enciphering (part 2)

• Homework 3 will be posted later today, due Monday 2/10 

• Academic conduct code: please read the syllabus + Piazza post 70 

• Textbook reading for this week: Serious Cryptography, ch. 4, pg. 13-23



Our plan: block ciphers !-> encryption

Block cipher = family of codebooks 

• Each key K yields different codebook BK 

• Fast to compute: throughput ~3-4 GB/sec

Mode of operation = variability 

• Allows long message with short key 

• Thwarts frequency analysis
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Bad attempt: Electronic Codebook (ECB) mode
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What if message blocks don’t repeat?

private data 
P1, P2, … Pℓ

???

key K key K

encode Ci = BK(Pi)

decode Pi = BK  (Ci)
-1

Suppose for now that |P| 
is a multiple of the block 
length



What if message blocks don’t repeat?

private data 
P1, P2, … Pℓ

???

key K key K

encode Ci = Π(Pi)

decode Pi = Π   (Ci)
-1

How to guarantee that 
message blocks don’t 
repeat?



Recap: CBC mode
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Seems like a good encryption scheme. 
But how do we prove this? 
In fact, what does “good" even mean?



A new type of unpredictability

Block cipher 

BK looks like a truly random function, 
meaning nobody can tell them apart

Encryption scheme 

Similar, except even making the same 
request twice yields different answers
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Defining symmetric encryption

Algorithms 

• KeyGen: choose key K !<- {0,1}λ 

• EncryptK ( P ∈ {0,1}ρ , N) !-> C ∈ {0,1}γ 

• Must be randomized with γ ≥ ρ 

• DecryptK ( C ∈ {0,1}γ , N) !-> P

Constraints 

• Performance: All algorithms are 
efficiently computable 

• Correctness: For every K, EncK and 
DecK are inverses 

• Security: ???



Pseudorandom under chosen plaintext attack (IND$-CPA)

For every adv A with runtime  ≤ t 
and queries totaling ≤ q blocks, 
 

Two variants 

• Standard: Eve doesn’t choose N, 
instead it is chosen randomly 

• Nonce-respecting: Eve chooses N, 
but each choice must be distinct

AEnc$(−,−) ≈(q,t,ε) A$(−,−)

bit b

P, N

$

P, N

C C

Enc B$



Informal proof by picture: CBC mode is IND$-CPA
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Encryption in practice

bu.edu homepage (2017) www.amazon.com

http://bu.edu
http://www.amazon.com


Counter (CTR) mode
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Issues to consider with CTR mode

1. Tradeoff between the lengths of N and ctr 

2. How do we choose N if the parties are stateless? 

3. How to prove that CTR satisfies IND$-CPA? 

4. What to do if N is accidentally repeated?

96 bits 32 bits

choose randomly,  
rely on birthday bound

later today

will re-visit in a few weeks



Birthday bound

• When drawing with replacement from set of size L,  

• The distribution of M is tightly concentrated around its expected value

E[# items to draw until first collision] ≈
π
2

L ≈ 1.25 L



Observation: CTR mode with Π !=> one time pad
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Informal proof that CTR mode is IND$-CPA
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Toward a mathematically rigorous proof

If we begin with: 

a block cipher  
that is (qB, tB, εB) pseudorandom

Then we can construct: 

symmetric key enc scheme 
that is (qC, tC, εC) indistinguishable 
from pseudorandom under a chosen 
plaintext attack

BK

Contrapositive: If an adversary A can solve the IND$-CPA game on                     , 

then we can construct an adversary A’ that breaks          almost as effectively.
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Thm:       is pseudorandom !->               is IND$-CPA

If we begin with: 

Adversary ACTR who can distinguish 

from 

with probability > εC given time tC and 
queries that total qC blocks of data

Then we can construct: 

Adversary ABC who can distinguish 

from 

with probability > εB given time tB and 
a total of qB queries

CTR BK $ BK Π

BK CTR BK



Formal CTR mode reduction

If we begin with: 

Adversary ACTR who can distinguish 

from

Then we can construct: 

Adversary ABC who can distinguish 

from
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How ABC operates

Wait for ACTR 
to output a 
(P, N) pair

Concatenate 
response blocks, 
then xor with P
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Why this reduction works

If ABC is talking to         , then this 
procedure faithfully yields

If ABC is talking to         , then this 
procedure faithfully yields                   , 

identical to              by non-repetition
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Our final result

If we begin with: 

Adversary ACTR who can distinguish 

from 

with probability > εC given time tC and 
queries that total qC blocks of data

Then we can construct: 

Adversary ABC who can distinguish 

from 

with probability > εC given time tC + qC 
and a total of qC queries

CTR BK $ BK Π



What if |P| isn’t a multiple of the block length?

• CTR mode produces a  
keystream to XOR with message 

• If you don’t need the full 
keystream, just discard it 

• No need to pad in CTR
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Padding in CBC?

• Not as simple: BK requires exactly 1 block of text, which means the XOR 
needs two inputs that are 1 block long 

• Seems like padding the final block P3 is necessary…
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PKCS #7 padding

Padding adds M whole bytes, each of value M 

What if the message is already a multiple of the block length?

0    1    2    3    4    5    6    7    8    9    10   11   12   13   14   15    

47  47  47  47  47  47  01  02  03  04  05  05  05  05  05  05

pad(end of) plaintext message



Ciphertext stealing for CBC

How to encrypt 

• Pad the final block with 0s 
(on its own, this is not invertible) 

• Output the entire final block 

• For the second-to-last block, 
only output the first |Mn| bytes 

How to decrypt 
• First decrypt the last block 

• Data after the first |Mn| bytes == C' 

• Now can decrypt the penultimate block
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Cn || C’Cn || C’

Ciphertext stealing for CBC

How to encrypt 

• Pad the final block with 0s 
(on its own, this is not invertible) 

• Output the entire final block 

• For the second-to-last block, 
only output the first |Mn| bytes 

How to decrypt 
• First decrypt the last block 

• Data after the first |Mn| bytes == C' 

• Now can decrypt the penultimate block
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