Lecture 5: Encryption via enciphering (part 2)

« Homework 3 will be posted later today, due Monday 2/10
e Academic conduct code: please read the syllabus + Piazza post 70

» Textbook reading for this week: Serious Cryptography, ch. 4, pg. 13-23

Our plan: block ciphers = encryption

Block cipher = family of codebooks Mode of operation = variability

e Each key K yields different codebook Bk e Allows long message with short key
e Fast to compute: throughput ~3-4 GB/sec e Thwarts frequency analysis
X X

or

Bad attempt: Electronic Codebook (ECB) mode

Raw image of Image after What we want
Linux penguin ECB mode from encryption

What if message blocks don’t repeat?

key I key I

encode C; = B,(P;) > '
P

decode P; = By, (C;)

private data
P, P,,..P,

Suppose for now that |P|
IS a multiple of the block
length

?2?7?

What if message blocks don’t repeat?

key I key I

encode C; = I(P;) > '
P

decode P; =T (C))

private data
P, P,,..P,

How to guarantee that
??? message blocks don't
repeat?

Recap: CBC mode

a

m\ =

= random ‘ K = random
strm:q C string
(]2) r n;/:g;teys for privacy
called an
initialization

vector or IV)

Seems like a good encryption scheme.
But how do we prove this?
In fact, what does “good" even mean?

A new type of unpredictability

Block cipher Encryption scheme

B¢ looks like a truly random function, Similar, except even making the same
meaning nobody can tell them apart request twice yields different answers

Defining symmetric encryption

Algorithms Constraints

* KeyGen: choose key K < {0,1}A * Performance: All algorithms are
efficiently computable
* Encrypti (P e {01}, N) = C e {01}y
* Correctness: For every K, Enck and
e Must be randomized with Y20P Deck are Inverses

* Decrypt (Ce {01}y, N) > P * Security: 7??

Pseudorandom under chosen plaintext attack (INDS-CPA)

| For every adv A with runtime <t
and queries totaling < g blocks,

Encg(—,—) ~ ——
A Encs()N(q,t,e) A$(=—)

Two variants

e Standard: Eve doesn’t choose N,
Instead 1t Is chosen randomly

* Nonce-respecting: Eve chooses N,
but each choice must be distinct

Informal proof by picture: CBC mode is INDS-CPA

Real CBC mode CBC with ideal cipher Ideal encryption scheme

P, P, P, P,

—
L

C, C,

by pseudorandomness Input to every
of the block cipher [11s “random”

Encryption in practice

bu.edu homepage (2017) WWW.amazon.com
B} Obsolete connection settings B Secure connection
The connection to this site uses TLS 1.0 (an obsolete The connection 1o this site is encrypted and
protocol), RSA (an obsolete key exchange), and authenticated using TLS 1.2 (a strong protocol),
AES 256 CBC with HMAC-SHA1 (an obsolete ECDHE_RSA with P-256 (a strong key exchange), and

cipher). AES 128 GCM (a strong cipher).

http://bu.edu
http://www.amazon.com

Counter (CTR) mode

p
N =
Synthetic,
C, C C; onetime
use key K’
CTR1 uses By (N’ ()) (N, 1) (N, 2)

In forward
direction!

Issues to consider with CTR mode
96 bits 32 bits

1. Tradeoff between the lengths of N and ctr

: : choose randomly,
2. How do we choose N if the parties are stateless? ., ,, b,-,.thday)gaund

3. How to prove that CTR satisfies INDS-CPA? — later today

4. What to do If N is accidentally repeated? —— will re-visit in a few weeks

Birthday bound

1

09

0.8

0.7 -

0.6 -

0.5 |-

Collision probability

04

0.3

0.2 -

0.1

s |] s | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of samples (k)

 When drawing with replacement from set of size L,
E[# items to draw until first collision] ~ , /%L ~ 1.25\/2

e The distribution of M is tightly concentrated around its expected value

Observation: CTR mode with IT = one time pad

(N, 0) (N, 1) (N, 2)

Informal proof that CTR mode is INDS-CPA

Real CTR CTR with ideal cipher Ideal encryption scheme
(N, 0) (N, 1) (N, 0) (N, 1) T T
$—>

S ARSI ﬁ% ﬁ% .

by pseudorandomness every N generates
of the block cipher a unique Rey

Toward a mathematically rigorous proof

If we begin with: Then we can construct:

a block cipher

-
symmetric key enc scheme

that is (gs, ts, €s) pseudorandom that is (qg, tc, €c) indistinguishable

from pseudorandom under a chosen
plaintext attack

Contrapositive: If an adversary A can solve the IND$-CPA game on ,

then we can construct an adversary A’ that breaks almost as effectively.

is IND$-CPA

Thm: |2l]is pseudorandom —

If we begin with: Then we can construct:

Adversary Acrr Who can distinguish Adversary Agc who can distinguish

from from n

with probability > - given time t: and with probability > €5 given time tz and
queries that total g. blocks of data a total of gg queries

Formal CTR mode reduction

If we begin with: Then we can construct:

Adversary Acrg Who can distinguish Adversary Agc who can distinguish

from

adversary adversary

Actr Agc

How Agc operates

Step 1. Step 2: Step 3: Step 4: Step 5:
Wait for Ac;g ~ Query Agc's own Concatenate Repeat Output the
to outputa oracle on (N,0), (N;1), response blocks, same bit as Acrr
(P, N) pair . (N, “_‘)‘_1) then xor with P
X
............. Y1
adversary v or
ACTR . Y2
bit b

Why this reduction works

If Agc IS talking to , then this If Agc IS talking to , then this
procedure faithfully yields procedure faithfully yields
Identical to by non-repetition

X

Y1
adversary adversary ya Of

Actr Agc v

bit b’

Our final result

If we begin with: Then we can construct:

Adversary Acrr Who can distinguish Adversary Agc who can distinguish

o L 3 o 3

with probability > &: given time t: and with probability > - given time t;: + g¢
queries that total g. blocks of data and a total of g. queries

What if |P| isn’t a multiple of the block length?

per-message per-block

» CTR mode produces a onee ™ /CO“”ter
keystream to XOR with message (i, 0) (N, 1) (N, 2)

v v v

e

 No need to pad in CTR L Synthetic, one tlme use key K

e e

slals

e If you don't need the full
keystream, just discard 1t

Padding in CBC?

p P P, P
| N—®
N— =
l
C, N N G G, C,

e Not as simple: Bk requires exactly 1 block of text, which means the XOR
needs two Inputs that are 1 block long

e Seems like padding the final block Ps Is necessary...

PKCS #7 padding

Padding adds M whole bytes, each of value M

(end of) plaintext message pad

/—/%/ N\

47 47 47 47 47 47 Q01 02 03 04 05 OS5 05 05 05 05

What if the message Is already a multiple of the block length?

Ciphertext stealing for CBC

How to encrypt

e Pad the final block with Os
(on its own, this is not invertible)

e Output the entire final block

 For the second-to-last block,
only output the first [M,| bytes

Ciphertext stealing for CBC

How to encrypt

e Pad the final block with Os
(on its own, this is not invertible)

e Output the entire final block

 For the second-to-last block,
only output the first [M,| bytes

How to decrypt

e First decrypt the last block
« Data after the first IM,| bytes ==’

 Now can decrypt the penultimate block

