
Lecture 5: Encryption via enciphering (part 2)

• Homework 3 will be posted later today, due Monday 2/10

• Academic conduct code: please read the syllabus + Piazza post 70

• Textbook reading for this week: Serious Cryptography, ch. 4, pg. 13-23

Our plan: block ciphers !-> encryption

Block cipher = family of codebooks

• Each key K yields different codebook BK

• Fast to compute: throughput ~3-4 GB/sec

Mode of operation = variability

• Allows long message with short key

• Thwarts frequency analysis

B

X

Y

K BK

X

Y

or BK

M1

C1

N

BK

M2

C2

BK

M3

C3

Bad attempt: Electronic Codebook (ECB) mode

BK

P1

C1

BK

Pℓ

Cℓ

…=ECB BK

P

C
Raw image of
Linux penguin

Image after 
ECB mode

What we want 
from encryption

What if message blocks don’t repeat?

private data 
P1, P2, … Pℓ

???

key K key K

encode Ci = BK(Pi)

decode Pi = BK (Ci)
-1

Suppose for now that |P|
is a multiple of the block
length

What if message blocks don’t repeat?

private data 
P1, P2, … Pℓ

???

key K key K

encode Ci = Π(Pi)

decode Pi = Π (Ci)
-1

How to guarantee that
message blocks don’t
repeat?

Recap: CBC mode

BK

P1

C1

BK

P2

C2

BK

P3

C3

 CBC

P

C

N =BK

N

N

N = random
string

for variety
(sometimes

called an
initialization
vector or IV)

K = random
string

for privacy

Seems like a good encryption scheme. 
But how do we prove this? 
In fact, what does “good" even mean?

A new type of unpredictability

Block cipher

BK looks like a truly random function,
meaning nobody can tell them apart

Encryption scheme

Similar, except even making the same
request twice yields different answers

B$

X

Π

X

Y Y

P, N

$

P, N

C C

Enc B$

Defining symmetric encryption

Algorithms

• KeyGen: choose key K !<- {0,1}λ

• EncryptK (P ∈ {0,1}ρ , N) !-> C ∈ {0,1}γ

• Must be randomized with γ ≥ ρ

• DecryptK (C ∈ {0,1}γ , N) !-> P

Constraints

• Performance: All algorithms are
efficiently computable

• Correctness: For every K, EncK and
DecK are inverses

• Security: ???

Pseudorandom under chosen plaintext attack (IND$-CPA)

For every adv A with runtime ≤ t
and queries totaling ≤ q blocks, 
 

Two variants

• Standard: Eve doesn’t choose N,
instead it is chosen randomly

• Nonce-respecting: Eve chooses N,
but each choice must be distinct

AEnc$(−,−) ≈(q,t,ε) A$(−,−)

bit b

P, N

$

P, N

C C

Enc B$

Informal proof by picture: CBC mode is IND$-CPA

BK

P1

C1

$

BK

P2

C2

P1

C1

$

P2

C2

$

CBC with ideal cipher

Π

P1

C1

$

Π

P2

C2

Ideal encryption scheme

by pseudorandomness
of the block cipher

?
input to every
Π is “random”

?

Real CBC mode

Encryption in practice

bu.edu homepage (2017) www.amazon.com

http://bu.edu
http://www.amazon.com

Counter (CTR) mode

BK

(N, 0)

C1

BK

(N, 1)

C2

BK

(N, 2)

C3

 CTR

P

C

N =
P1 P2 P3

BK

BK

(N, 0)

P1

BK

(N, 1)

P2

BK

(N, 2)

P3

CTR-1 BK

C

P

=
C1 C2 C3

N CTR-1 uses BK
in forward
direction!

Synthetic,
one time
use key K’

Issues to consider with CTR mode

1. Tradeoff between the lengths of N and ctr

2. How do we choose N if the parties are stateless?

3. How to prove that CTR satisfies IND$-CPA?

4. What to do if N is accidentally repeated?

96 bits 32 bits

choose randomly,  
rely on birthday bound

later today

will re-visit in a few weeks

Birthday bound

• When drawing with replacement from set of size L,  

• The distribution of M is tightly concentrated around its expected value

E[# items to draw until first collision] ≈
π
2

L ≈ 1.25 L

Observation: CTR mode with Π !=> one time pad

Π

(N, 0)

C1

Π

(N, 1)

C2

Π

(N, 2)

C3

CTR Π

P

C

N =

P1 P2 P3

Informal proof that CTR mode is IND$-CPA

BK

(N, 0)

C1

BK

(N, 1)

C2

P1 P2

One time key K’

Real CTR CTR with ideal cipher

Π

(N, 0)

C1

Π

(N, 1)

C2

P1 P2

One time key K’

by pseudorandomness
of the block cipher

?

P1

C1

$

P2

C2

$

Ideal encryption scheme

every N generates
a unique key

?

Toward a mathematically rigorous proof

If we begin with:

a block cipher  
that is (qB, tB, εB) pseudorandom

Then we can construct:

symmetric key enc scheme 
that is (qC, tC, εC) indistinguishable
from pseudorandom under a chosen
plaintext attack

BK

Contrapositive: If an adversary A can solve the IND$-CPA game on ,

then we can construct an adversary A’ that breaks almost as effectively.

Mode BK

BK

Mode BK

Thm: is pseudorandom !-> is IND$-CPA

If we begin with:

Adversary ACTR who can distinguish

from

with probability > εC given time tC and
queries that total qC blocks of data

Then we can construct:

Adversary ABC who can distinguish

from

with probability > εB given time tB and
a total of qB queries

CTR BK $ BK Π

BK CTR BK

Formal CTR mode reduction

If we begin with:

Adversary ACTR who can distinguish

from

Then we can construct:

Adversary ABC who can distinguish

from

adversary

ACTR

CTR BK

$

or

P1, N1

C1

P2, N2

C2

bit b

…

adversary

ABC

or
BK

Π

X1

Y1

X2

Y2

bit b’

…
CTR BK $ BK Π

How ABC operates

Wait for ACTR
to output a
(P, N) pair

Concatenate
response blocks,
then xor with P

adversary

ACTR

CTR BK

$

or

P1, N1

C1

bit b

P2, N2

C2…

adversary

ABC

or
BK

Π

X1

Y1

X2

Y2

bit b

…

Query ABC’s own
oracle on (N,0), (N,1),
…, (N, |P|-1)

Output the 
same bit as ACTR

Step 2: Step 3:Step 1: Step 5:
Repeat
Step 4:

Why this reduction works

If ABC is talking to , then this
procedure faithfully yields

If ABC is talking to , then this
procedure faithfully yields ,

identical to by non-repetition
CTR BK

$

BK Π

adversary

ACTR

CTR BK

$

or

P1, N1

C1

P2, N2

C2

bit b

…

adversary

ABC

or
BK

Π

X1

Y1

X2

Y2

bit b’

…

CTR Π

Our final result

If we begin with:

Adversary ACTR who can distinguish

from

with probability > εC given time tC and
queries that total qC blocks of data

Then we can construct:

Adversary ABC who can distinguish

from

with probability > εC given time tC + qC
and a total of qC queries

CTR BK $ BK Π

What if |P| isn’t a multiple of the block length?

• CTR mode produces a  
keystream to XOR with message

• If you don’t need the full
keystream, just discard it

• No need to pad in CTR

per-block
counter

BK

(N, 0)

BK

(N, 1)

BK

(N, 2)

C1 C2 C3

P1 P2 P3

Synthetic, one time use key K’

per-message
nonce

Padding in CBC?

• Not as simple: BK requires exactly 1 block of text, which means the XOR
needs two inputs that are 1 block long

• Seems like padding the final block P3 is necessary…

BK

P1

C1

N

BK

P2

C2

BK

P3

C3

 CBC BK

P

C, N

N =

N

PKCS #7 padding

Padding adds M whole bytes, each of value M

What if the message is already a multiple of the block length?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

47 47 47 47 47 47 01 02 03 04 05 05 05 05 05 05

pad(end of) plaintext message

Ciphertext stealing for CBC

How to encrypt

• Pad the final block with 0s 
(on its own, this is not invertible)

• Output the entire final block

• For the second-to-last block, 
only output the first |Mn| bytes

How to decrypt
• First decrypt the last block

• Data after the first |Mn| bytes == C'

• Now can decrypt the penultimate block

BK

Mn-1

Cn || C’

BK

Mn || 0

Cn-1Cn-2

Cn || C’Cn || C’

Ciphertext stealing for CBC

How to encrypt

• Pad the final block with 0s 
(on its own, this is not invertible)

• Output the entire final block

• For the second-to-last block, 
only output the first |Mn| bytes

How to decrypt
• First decrypt the last block

• Data after the first |Mn| bytes == C'

• Now can decrypt the penultimate block

BK

Mn-1

Cn || C’

BK

Mn || 0

Cn-1Cn-2

Cn-1

BK

Xn-1

-1 BK

Xn || C’

-1

Xn || C’Xn-1

