Lecture 11: Padding oracles

Last week: Power analysis and timing attacks

Power analysis (SPA, DPA, template) Timing attacks (cache: prime+probe,
evict+time; network)

')H_»'w'li-.'\\lf“‘kr'qh.))“".1*]"*)’\"’ W "W"‘* “f” qj,»;.mldl&.,‘ "‘“, ok f"\"‘M‘

§
"

] f \ E

0.25 : : s
0.2 :]
0.15 Key 0x73 1

cache main memory

0.1
50.05
s 25 —
g 0 2 Hogght thbt
[*] H C 1.5 A
O-0.05 f x 1
i : 05 A, . .
H 05 ar et T
- L] _1 -
-0.1 H
0 5 : '15 T T T T T T T T T T T T T T T
-0.2 ¢ . 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
-0.25

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of measurements

Today: Padding Oracle Attacks

* Last week: Attacks on AES
— Exploit knowledge of power, timing

* Today: Attacks on modes of AES: CBC mode (plus other ingredients)

— Exploit knowledge of error messages

Divide and conquer

* Attacks follow a divide and
conquer approach: break 1 byte at
a time

* For each byte, simply guess all 256
values and check which one works

* (Think: how you see crypto broken
in any Hollywood movie)

Padding Oracles [Vaudenay 2002]

* Main idea: Exploit error messages for different kinds of
malformed input to recover the plaintext

* Four building blocks:
1. CBC Mode

2. PKCS#7 Padding

3. Authenticate-then-Encrypt
1. How to authenticate?2?

4. Error messages

Building block 1: CBC mode (encryption)

(& CBC Enc | B,

|

public
random C

string

Recall: CBC mode needs padding

1V —

B,

Pl PZ P3

[TITTTTT]
_,? \
,

=T

v C C, C,

I 4

For today: Length of P = any number of bytes
Will not “split” bytes
Might not be multiple of 16

Building block 2: PKCS #7 padding

cC €¢C CC CC CC CcC Ccc cCcC cc cCc cCcc cCc cc cc cc @1

%) 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15

cC CC CC CcC CC CC cCcC CC CC cCc cCc cC o4 04 94 o4

%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 bytes of padding

A
' ™

CC CC CC CC CC CC ©OA OA OA OA OA OA OA OA OA OA

%) 1 2 3 4 5 6 7/ 3 9 10 11 12 13 14 15

PKCS #7 padding

Padding adds N whole bytes, each of value N

(end of) plaintext message pad

A A
- N I
47 47 47 47 47 47 @1 02 03 04 05 O©5 ©5 o5 05 05

%) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

What if padding is invalid? 10

AN
a M

47 47 47 47 47 47 47 47 47 47 47 47 06 06 06 06

Return error message “Invalid Padding”
(Building block 2 for padding oracle attacks)

Building block 3: Authenticate-Then-Encrypt

But first...

11

Building block 3.5: Authenticate 222

Sneak preview to something you’'ll talk about next week/month.

12

Building block 3.5: Authenticate

What it Mallory replaces our ciphertext on the wire?

1=T7"7

13

Forget confidentiality. What about authenticity?

14

o
Message M > f Message M’ >
o

(@ .

/

Building block 3.5: Authenticate 1

Imagine the following (keyed) authentication mechanism:

Alice wants to send M. Bob receives (M,T)
M

M T

T T’ 1=1"7
Computes T=Auth (M) Computes T'=Auth (M)
Sends (M,T) If T=T, know sender of M had K

Building block 3.5: Authenticate 16

Because she doesn’t have K, she can’t authenticate new messages...

M A M h
(v // e
fake v M Make Tfake

K K ake

T)

T
fake) —
T'=Tepe

Reject!

Building block 3.5: Authenticate 17

Mallory cannot simply reuse the existing tag for a different message...

// g/lfake> m

T -
s 2 M T

ake

K ake

T
ke T’'/=T

Reject!

Building block 3.5: Authenticate 18

Even if she knows M, Mallory can’t generate new T for it without knowing K...

g 8
- Thoke — M T
h - « M fake
@
4

T
fake) —

Reject!

Building block 3.5: Authenticate 19

For Bob to accept, T=Auth (M)

=9 |

M M T
-V,

T’ ==
Accept

Building block 3: Auth-then-Encrypt (hmmm)

Consider the following scheme for

encrypting and authenticating plaintext P: P

1. Let T = Auth(P)

2. Let pqd = PKCS7(P ” T) (Il is concatenation)

3. Return C=CBC_Enc(P | T| pad)

20

Decryption-then-verification (hmmm)

Decrypting/authenticating ciphertext C:

1. Let (P, T, pad) = CBC_Dec(C)

.

2. Let T' = Auth(P)
3. Check whether T'=T

.

Valid plaintext

21

Building block 4: Error codes 22

Decrypting/authenticating ciphertext C:

1. Let (P, T, pad) = CBC_Dec(C)

i Lj> Invalid Padding
\

2. Let T = Auth(P) “oftor messagesto.
3. Check whether T'=T recover P

/
i L$ Reject Auth

Valid plaintext

Attack setup

23

Problems with CBC decryption?

* Formally:
— Doesn’t provide integrity
— Isn’t nonce-respecting

» Specific concerns to exploit
today: Malleability

— Altering ciphertext block C; changes
plaintext block P, in a byte by byte
manner! (Destroys P, in the process, but
no matter)

24

Padding oracle attack exceuction

Attack procedure
« Send 256 CTs to

Bob,one for each value
of c

* Probably all will fail.

— 255 of the failures will
be due to bad padding

— 1 failures will have

valid pad, bad MAC

« Save the value of ¢
causing the 2 error!

use this.....

25

C

o

—4

5

)

to change this.

Padding oracle attack exceuction

Attack procedure
« Send 256 CTs to

Bob,one for each value
of c

* Probably all will fail.

— 255 of the failures will
be due to bad padding

— 1 failures will have

valid pad, bad MAC

« Save the value of ¢
causing the 2 error!

26

o

—4

030303

Padding oracle attack exceuction 27

256 options for ¢

Attack procedure uf

« Send 256 CTs to
Bob,one for each value
of c

* Probably all will fail.

— 255 of the failures will ’é

be due to bad padding 3
— 1 failures will have
valid pad, bad MAC 0303 Ol

* Save the VGIUG OF C one of them causes valid padding 01
causing the 2" error!

all* others cause invalid padding

Recover plaintext byte

28

We can compute a two ways:
=Xom

= c @ 0Ox01

Compute original message
byte m = x @ ¢ ® 0x0]1

i

s——

0303 Jei

0303 m

Recover NEXT plaintext byte! 29

set this to whatever causes the last byte to be 02

We can compute a two ways: u:f

= X9m
=c® 0x02

Compute original message a

byte m = x ® ¢ ® 0x02 ’é

$
03 [02

03 m 03

Rinse and repeat!

30

We can compute a two ways:

= Xom

= c @ 0x03

Compute original message
byte m = x ® ¢ ® 0x03

m 0303

Rinse and repeat!

31

We can recover the entire
plaintext this way!

——

To recap

Mallory knows C for unknown msg

She uses mauling power to make
all 256 options of final byte

Exactly one will have the final byte
01 & thus look like a valid pad!

The other mauled messages will
have an invalid tag, such as 030302

32

private P tag T pad 030303
private P tag T~ pad 0303xx
private P tag (77]| 0303) | pad 01

Different error messages > can distinguish between these two cases

Use distinction to learn actual value of the final byte (here, 03)

Repeat this process byte-by-byte to recover the entire plaintext!

To recap: What were the issues here?

» Ability to distinguish between different
kinds of errors

* Malleability (CBC mode)

» Authentication was not first step
More on this later

33

Another way to attack malleable modes: injection 34

Poddebniak et al, 2018, “EFAIL”
S/MIME and OpenPGP encrypted emails + CBC mode

Utilize DNS server under attacker control: learn content of message by injecting an image at
“attacker.com/<encrypted-email-contents>

\Y, Co (o G C; X=IVD P, Co
||||||||||||||||\||||||||||||||\||||||||—||||||||
(a) D D D (b) C
[Fecntent= typaiinal] * * [o]e[oTo]o]o]o]o]
P, P, unknown plaintext unknown plaintext
Xo=IV®D Py D Peo Co X1=IV @ Py @ P

SENENNSSpEEN ||||—!||||||||!||l||||H|||||||!|||||||||

decryption decryption decryption decryption decryption decryption
(c) : b P i

<ing ignore= | [2[2[2[2[2[2[2[2] | » erc-efair.aes | [2[2[2[2][z[z[2[7] IS SRR

P random plaintext P random plaintext unknown plaintext unknown plaintext

Padding Oracle Timeline
2002: Serge Vaudenay discovers CBC

padding oracle attacks

2002-11: Extensions to specific systems like

XML Encryption
2011: BEAST (Browser Exploit Against

SSL/TLS) builds Java applet to perform the

padding oracle in TLS 1.0

2013: Lucky 13 (TLS messages with 2 correct

padding bytes processed faster than 1)
2014: POODLE (Padding Oracle On

Downgraded Legacy Encryption) finds that
the straightforward oracle works on SSL 3.0

2015: Extended Lucky 13 attack on

Amazon’s timing-independent TLS
implementation

2017: TLS 1.3 breaks backward compatibility,

permits Enc-then-Auth

35

Jan Schaumann
Attack timeline T given a theoretical vulnerability V:

TO: academic research shows an attack is possible
Industry: Pfft, unrealistic.

Jan Schaumann
T1: nation-state attackers use the attack covertly
Industry: See, nobody's using this, nothing to worry about.

Jan Schaumann
T2: academic research shows an attack is feasible with $$$$
Industry: We still have time.

Jan Schaumann
T3: actually sophisticated attackers start using it
Industry: We should do something. Not today, but definitely Soon(tm).

Jan Schaumann
T4: attacks become commodity, metasploit plugin appears
Industry: *gulp* *scrambles* *panic*

Jan Schaumann
T5: with much pain, industry eliminates attack vector
Industry: yay, we're all good now

How can we fix this?

* Bob’s solution: return the same error message in cases #1 and #2

« Remember the three cases * Required effort
1. Invalid padding — Read the padding bytes
2. Valid padding, wrong Auth = Read padding bytes, compute the Auth
3. Valid padding, right Auth = Read padding bytes, compute the Auth

* Mallory’s countermeasure: can still distinguish the two cases by observing
the fime that the MAC-then-Encrypt system takes to executel!

* Bob’s new solution: ensure that crypto software’s running time is
independent of input; here, perform the HMAC test whether the padding is
correct or not

* Mallory’s new countermeasure: exploit timing variation within HMAC itself
®

How to fix these vulnerabilities® 37

Can check to make sure you’re operating on exactly what you expect
...but you had better make sure that this check is itself timing-independent

...and even then the fix might introduce a side-channel of its own

Basically. timina-independence OpenSSL Fact @OpenSSLFact Jul 24, 2013

. Y | 9 P /*The aim of right-shifting md_size is so that the compiler doesn't

IS reqlly hard! figure out that it can remove div_spoiler..which | hope is beyond it.*/

(So IS softwq re in generql.) OpenSSL Fac.:t @OpenSSLFact Jan 22, 2013
/* EEK! Experimental code starts */

C:penSSL Fack @O.penSSLFact . . Sep 3, 2012 OpenSSL Fact @OpenSSLFact Sep 5, 2012

/* [we should] obviate the ugly and illegal kludge in /* BIG UGLY WARNING! This is so damn ugly | wanna puke ... ARGH!

CRYPTO_mem_leaks_cb. Otherwise the code police will come and get ARGH! ARGH! Let's get rid of this macro package. Please? */

us.*/

What can you do?

Use good crypto coding conventions

This page lists coding rules with for each a description of the problem addressed (with a

concrete example of failure), and then one or more solutions (with example code snippets).

Contents [hide]

1 Compare secret strings in constant time
1.1 Problem
1.2 Solution
2 Avoid branchings controlled by secret data
2.1 Problem
2.2 Solution
3 Avoid table look-ups indexed by secret data
3.1 Problem
3.2 Solution
4 Avoid secret-dependent loop bounds
4.1 Problem
4.2 Solution
5 Prevent compiler interference with security-critical operations
5.1 Problem
5.2 Solution
6 Prevent confusion between secure and insecure APIs
6.1 Problem
6.2 Bad Solutions
6.3 Solution

38

Validate code for timing independence

H agl / ctgrind ©

<> Code Issues 0 Pull requests 1 Projects 0 Pulse Graphs

Checking that functions are constant time with Valgrind

® 3 commits ¥ 1 branch © 0 releases

Branch: master v

Adam Langley C++ support and constify pointers
[E) Makefile Initial import
[E) README A couple of typos
[E) ctgrind.c C++ support and constify pointers
(B ctgrind.h C++ support and constify pointers
[E) test.c Initial import

[) valgrind.patch Initial import

README

Checking that functions are constant time with Valgrind.

Related sources of error

Compression oracles

Basic idea: if you apply
compression before encryption,
then post-compression message
Iengtﬁ reveals some information
about message!

2012: CRIME (Compression Ratio
Info-leak Made Easy) recovers
secret web cookies over HTTPS
connections, hijacks sessions

2013: BREACH (Browser
Reconnaissance and Exfiltration via
Adaptive Compression of
Hypertext)

39

Format oracles

* Basic idea: if a higher-level
protocol expects underlying
message to obey some structural
rules, can tinker with ciphertext
until you find something that works

« 2011: “How to break XML

encryption”

« 2015: “How to break XML
encryption - automatically”

Summary: attacker oracles

* When we talk of ‘oracles’ in cryptanalysis, we mean that somehow the
system is providing the attacker with the ability to compute f(P) for some
function f

 There are many possible sources of these ‘oracles’

— Error messages

— Message length, if a compression function is applied pre-encryption
— Expected formatting of the underlying message (e.g., XML)

— Time for a computation to finish

— Performance speedup in running time due to the cache

— Power consumed by the device

40

