
1Lecture 11: Padding oracles

2Last week: Power analysis and timing attacks

Power analysis (SPA, DPA, template) Timing attacks (cache: prime+probe,
evict+time; network)

cache main memory

3Today: Padding Oracle Attacks

• Last week: Attacks on AES
– Exploit knowledge of power, timing

• Today: Attacks on modes of AES: CBC mode (plus other ingredients)
– Exploit knowledge of error messages

4Divide and conquer

• Attacks follow a divide and
conquer approach: break 1 byte at
a time

• For each byte, simply guess all 256
values and check which one works

• (Think: how you see crypto broken
in any Hollywood movie)

5Padding Oracles [Vaudenay 2002]

• Main idea: Exploit error messages for different kinds of
malformed input to recover the plaintext

• Four building blocks:
1. CBC Mode
2. PKCS#7 Padding
3. Authenticate-then-Encrypt

1. How to authenticate???
4. Error messages

6Building block 1: CBC mode (encryption)

BK

P1

C1

IV

BK

P2

C2IV

BK

P3

C3

=

public
random
string

CBC Enc BKIV

P

C

7Recall: CBC mode needs padding

BK

P1

C1

IV

BK

P2

C2IV

BK

P3

C3

CBC Enc BKIV

P

C

= ?

For today: Length of P = any number of bytes
• Will not “split” bytes
• Might not be multiple of 16

8Building block 2: PKCS #7 padding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CC CC CC CC CC CC CC CC CC CC CC CC CC CC CC 01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CC CC CC CC CC CC CC CC CC CC CC CC 04 04 04 04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CC CC CC CC CC CC 0A 0A 0A 0A 0A 0A 0A 0A 0A 0A

10 bytes of padding

9PKCS #7 padding

Padding adds N whole bytes, each of value N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

47 47 47 47 47 47 01 02 03 04 05 05 05 05 05 05

pad(end of) plaintext message

10What if padding is invalid?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

47 47 47 47 47 47 47 47 47 47 47 47 06 06 06 06

Return error message “Invalid Padding”
(Building block 2 for padding oracle attacks)

11Building block 3: Authenticate-Then-Encrypt

But first…

12Building block 3.5: Authenticate ???

Sneak preview to something you’ll talk about next week/month.

13Building block 3.5: Authenticate

What if Mallory replaces our ciphertext on the wire?

AuthK

T

M

AuthK

T’

M T

T=T’ ?

14

Message M Message M’

Forget confidentiality. What about authenticity?

15Building block 3.5: Authenticate

Imagine the following (keyed) authentication mechanism:

Alice wants to send M. Bob receives (M,T)

Computes T=AuthK(M) Computes T’=AuthK(M)
Sends (M,T) If T = T’, know sender of M had K

AuthK

T

M

AuthK

T’

M T

T=T’ ?

16Building block 3.5: Authenticate

Auth?

Tfake

Mfake

AuthK

T’

Mfake Tfake

T’ != Tfake
Reject!

Because she doesn’t have K, she can’t authenticate new messages…
M

T Tfake

K K

Mfake

17Building block 3.5: Authenticate

Auth?

Tfake

Mfake

AuthK

T’

Mfake T

T’ != T
Reject!

Mallory cannot simply reuse the existing tag for a different message…
M

T

Mfake

K K

18Building block 3.5: Authenticate

Auth?

Tfake

M

AuthK

T’

M Tfake

T’ != Tfake
Reject!

Even if she knows M, Mallory can’t generate new T for it without knowing K…

M

Tfake

K K

19Building block 3.5: Authenticate

AuthK

T’

M T

T’ == T
Accept

For Bob to accept, T=AuthK(M)
M

T
K K

AuthK

T

M

20Building block 3: Auth-then-Encrypt (hmmm)

P

Auth

CBC Enc

T
pad

C

Consider the following scheme for
encrypting and authenticating plaintext P:

1. Let T = Auth(P)

2. Let pad = PKCS7(P ‖ T) (‖ is concatenation)

3. Return C = CBC_Enc(P ‖ T ‖ pad)

21Decryption-then-verification (hmmm)

P

CBC Dec

pad

C

Auth

T’=T?

Decrypting/authenticating ciphertext C:

1. Let (P, T, pad) = CBC_Dec(C)

2. Let T’ = Auth(P)
3. Check whether T’=T

T

Valid plaintext

22Building block 4: Error codes

P

CBC Dec

pad

C

Auth

T’=T?

Decrypting/authenticating ciphertext C:

1. Let (P, T, pad) = CBC_Dec(C)

2. Let T’ = Auth(P)
3. Check whether T’=T

T Invalid Padding

Reject Auth

Valid plaintext

Exploit these distinct
error messages to

recover P

23Attack setup

Auth-then-Encrypt of private data P

24Problems with CBC decryption?

• Formally:
– Doesn’t provide integrity
– Isn’t nonce-respecting
– …

• Specific concerns to exploit
today: Malleability
– Altering ciphertext block C1 changes

plaintext block P2 in a byte by byte
manner! (Destroys P1 in the process, but
no matter)

BK
-1

P1

C1

$

BK
-1

P2

C2

25Padding oracle attack exceuction

BK
-1

$

BK
-1

CAttack procedure
• Send 256 CTs to

Bob,one for each value
of c

• Probably all will fail.
– 255 of the failures will

be due to bad padding
– 1 failures will have

valid pad, bad MAC

• Save the value of c
causing the 2nd error!

C

use this…..

to change this.

26Padding oracle attack exceuction

BK
-1

$

BK
-1

Attack procedure
• Send 256 CTs to

Bob,one for each value
of c

• Probably all will fail.
– 255 of the failures will

be due to bad padding
– 1 failures will have

valid pad, bad MAC

• Save the value of c
causing the 2nd error!

030303

27Padding oracle attack exceuction

BK
-1

$

BK
-1

Attack procedure
• Send 256 CTs to

Bob,one for each value
of c

• Probably all will fail.
– 255 of the failures will

be due to bad padding
– 1 failures will have

valid pad, bad MAC

• Save the value of c
causing the 2nd error!

c

01

256 options for c

one of them causes valid padding 01

all* others cause invalid padding

0303

28Recover plaintext byte

BK
-1

$

BK
-1

c

010303

0303 m

We can compute a two ways:
a = x ⊕ m
a = c ⊕ 0x01

Compute original message
byte m = x ⊕ c ⊕ 0x01

a

x

29Recover NEXT plaintext byte!

BK
-1

$

BK
-1

c

0203

set this to whatever causes the last byte to be 02

02

03 m 03

We can compute a two ways:
a = x ⊕ m
a = c ⊕ 0x02

Compute original message
byte m = x ⊕ c ⊕ 0x02

a

30Rinse and repeat!

BK
-1

$

BK
-1

c

03 0303

m

We can compute a two ways:
a = x ⊕ m
a = c ⊕ 0x03

Compute original message
byte m = x ⊕ c ⊕ 0x03

a

31Rinse and repeat!

BK
-1

$

BK
-1

c

04 040404

m

We can recover the entire
plaintext this way!

a

32To recap

• Mallory knows C for unknown msg

• She uses mauling power to make
all 256 options of final byte

• Exactly one will have the final byte
01 & thus look like a valid pad!

• The other mauled messages will
have an invalid tag, such as 030302

• Different error messages → can distinguish between these two cases

• Use distinction to learn actual value of the final byte (here, 03)

• Repeat this process byte-by-byte to recover the entire plaintext!

private P tag T pad 030303

private P tag T’ pad 0303xx

private P tag (T’ || 0303) pad 01

33To recap: What were the issues here?

P

Auth

CBC Enc

T
pad

C

• Ability to distinguish between different
kinds of errors

• Malleability (CBC mode)
• Authentication was not first step

• More on this later

34Another way to attack malleable modes: injection

Poddebniak et al, 2018, “EFAIL”
S/MIME and OpenPGP encrypted emails + CBC mode
Utilize DNS server under attacker control: learn content of message by injecting an image at
“attacker.com/<encrypted-email-contents>

35Padding Oracle Timeline
• 2002: Serge Vaudenay discovers CBC

padding oracle attacks
• 2002-11: Extensions to specific systems like

XML Encryption
• 2011: BEAST (Browser Exploit Against

SSL/TLS) builds Java applet to perform the
padding oracle in TLS 1.0

• 2013: Lucky 13 (TLS messages with 2 correct
padding bytes processed faster than 1)

• 2014: POODLE (Padding Oracle On
Downgraded Legacy Encryption) finds that
the straightforward oracle works on SSL 3.0

• 2015: Extended Lucky 13 attack on
Amazon’s timing-independent TLS
implementation

• 2017: TLS 1.3 breaks backward compatibility,
permits Enc-then-Auth

36How can we fix this?

• Bob’s solution: return the same error message in cases #1 and #2

• Remember the three cases
1. Invalid padding
2. Valid padding, wrong Auth
3. Valid padding, right Auth

• Mallory’s countermeasure: can still distinguish the two cases by observing
the time that the MAC-then-Encrypt system takes to execute!

• Bob’s new solution: ensure that crypto software’s running time is
independent of input; here, perform the HMAC test whether the padding is
correct or not

• Mallory’s new countermeasure: exploit timing variation within HMAC itself
L

• Required effort
⇒ Read the padding bytes
⇒ Read padding bytes, compute the Auth
⇒ Read padding bytes, compute the Auth

37How to fix these vulnerabilities?

Can check to make sure you’re operating on exactly what you expect
…but you had better make sure that this check is itself timing-independent
…and even then the fix might introduce a side-channel of its own

Basically, timing-independence
is really hard!

(So is software in general.)

38What can you do?

Use good crypto coding conventions Validate code for timing independence

39Related sources of error

Compression oracles

• Basic idea: if you apply
compression before encryption,
then post-compression message
length reveals some information
about message!

• 2012: CRIME (Compression Ratio
Info-leak Made Easy) recovers
secret web cookies over HTTPS
connections, hijacks sessions

• 2013: BREACH (Browser
Reconnaissance and Exfiltration via
Adaptive Compression of
Hypertext)

Format oracles

• Basic idea: if a higher-level
protocol expects underlying
message to obey some structural
rules, can tinker with ciphertext
until you find something that works

• 2011: “How to break XML
encryption”

• 2015: “How to break XML
encryption – automatically”

40Summary: attacker oracles

• When we talk of ‘oracles’ in cryptanalysis, we mean that somehow the
system is providing the attacker with the ability to compute f(P) for some
function f

• There are many possible sources of these ‘oracles’
– Error messages
– Message length, if a compression function is applied pre-encryption
– Expected formatting of the underlying message (e.g., XML)
– Time for a computation to finish
– Performance speedup in running time due to the cache
– Power consumed by the device

