
Lecture 8: Timing attacks

• Homework 4 has been posted 

• There is no lecture on Tuesday 2/18 

• In-class test on Thursday 2/20, covering the following material: 

• All lectures up to (and including) this one 

• All Friday discussion sections 

• All concepts within the first 4 homework assignments 

• All required textbook reading 

• Nicolas’ discussion section tomorrow will be test preparation



Crypto = Scientific field at intersection of many disciplines

Complexity theory 
Known for reductions. 
Primarily found in 
American academia.

Engineering 
Known for software dev 
and side channel attacks. 
Primarily found in industry.

Mathematics 
Known for cryptanalysis. 
Primarily found in 
government.

!

"

Algorithms 
Known for cipher design. 
Primarily found in 
European academia. A⇒B

This class
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Math of 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Physics of 
implementation
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implementation
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Breaking data confidentiality

message P

key K key K

fake file
s

(something)

message P, maybe even key K



• Crypto security definitions ensure that the output is “harmless” 

• But, crypto implementations can reveal more than its desired outputs! 
These side channels of information weren’t captured in our definitions 

• Focus for this week: side channels on AES

Side channel attacks on crypto implementations

AES

X

Y

K AES AES AES

!=> and thus any AES mode



Divide and conquer

• Break 1 byte of the message or 
key at a time 

• For each byte: guess all 256 
values and check which works 

• (Think: how you see crypto 
broken in any Hollywood movie)



Last time: Power analysis of AES in hardware

Mallory: oscilloscope to measure power Alice: FPGA that runs AES



Today: Timing attacks on AES in software

AES

X

Y

K

16 byte input

S S S S… …

round key0

16 byte output

S S S S… …

round key10

… …… …

Learn S-box input or 
output !=> learn the keyQuestion: what might 

affect the runtime of AES? 

Answer: the S-box! 
Let’s look at simplified 
first and last rounds of AES



Simplified picture of first round of AES

• The first round of AES begins with xor of key followed by S-box lookups 

• Let A and B denote the 16-byte state before/after the first round S-box 

• Claim: if Eve knows input X along with A (or B), she can recover the secret key

16 byte input X

S S S S

first round key
a1 = key1 ⊕ x1 a16 = key16 ⊕ x16

b1 = S[a1] b2 = S[a2] b16 = S[a16]

…
a2 = key2 ⊕ x2



Simplified picture of last round of AES

• Similar attack on last round: if Eve knows Y and A/B, can recover key 

• There is a bijection between the first and last round keys of AES 

• (Note: picture omits the final round ShiftRows, which permutes bytes)

16 byte output Y

S S S S

last round key
a1 = key1 ⊕ y1 a16 = key16 ⊕ y16

b1 = S-1[a1] b2 = S-1[a2] b16 = S-1[a16]

…
a2 = key2 ⊕ y2



AES code has table lookups

static const u8 Te4[256] = { 
    0x63U, 0x7cU, 0x77U, 0x7bU, 0xf2U, 0x6bU, 0x6fU, 0xc5U, 
    0x30U, 0x01U, 0x67U, 0x2bU, 0xfeU, 0xd7U, 0xabU, 0x76U, 
    0xcaU, 0x82U, 0xc9U, 0x7dU, 0xfaU, 0x59U, 0x47U, 0xf0U, 
    0xadU, 0xd4U, 0xa2U, 0xafU, 0x9cU, 0xa4U, 0x72U, 0xc0U, 
    0xb7U, 0xfdU, 0x93U, 0x26U, 0x36U, 0x3fU, 0xf7U, 0xccU, 
    0x34U, 0xa5U, 0xe5U, 0xf1U, 0x71U, 0xd8U, 0x31U, 0x15U, 
    0x04U, 0xc7U, 0x23U, 0xc3U, 0x18U, 0x96U, 0x05U, 0x9aU, 
    0x07U, 0x12U, 0x80U, 0xe2U, 0xebU, 0x27U, 0xb2U, 0x75U, 
    0x09U, 0x83U, 0x2cU, 0x1aU, 0x1bU, 0x6eU, 0x5aU, 0xa0U, 
    0x52U, 0x3bU, 0xd6U, 0xb3U, 0x29U, 0xe3U, 0x2fU, 0x84U, 
    0x53U, 0xd1U, 0x00U, 0xedU, 0x20U, 0xfcU, 0xb1U, 0x5bU, 
    0x6aU, 0xcbU, 0xbeU, 0x39U, 0x4aU, 0x4cU, 0x58U, 0xcfU, 
    0xd0U, 0xefU, 0xaaU, 0xfbU, 0x43U, 0x4dU, 0x33U, 0x85U, 
    0x45U, 0xf9U, 0x02U, 0x7fU, 0x50U, 0x3cU, 0x9fU, 0xa8U, 
    0x51U, 0xa3U, 0x40U, 0x8fU, 0x92U, 0x9dU, 0x38U, 0xf5U, 
    0xbcU, 0xb6U, 0xdaU, 0x21U, 0x10U, 0xffU, 0xf3U, 0xd2U, 
    0xcdU, 0x0cU, 0x13U, 0xecU, 0x5fU, 0x97U, 0x44U, 0x17U, 
    0xc4U, 0xa7U, 0x7eU, 0x3dU, 0x64U, 0x5dU, 0x19U, 0x73U, 
    0x60U, 0x81U, 0x4fU, 0xdcU, 0x22U, 0x2aU, 0x90U, 0x88U, 
    0x46U, 0xeeU, 0xb8U, 0x14U, 0xdeU, 0x5eU, 0x0bU, 0xdbU, 
    0xe0U, 0x32U, 0x3aU, 0x0aU, 0x49U, 0x06U, 0x24U, 0x5cU, 
    0xc2U, 0xd3U, 0xacU, 0x62U, 0x91U, 0x95U, 0xe4U, 0x79U, 
    0xe7U, 0xc8U, 0x37U, 0x6dU, 0x8dU, 0xd5U, 0x4eU, 0xa9U, 
    0x6cU, 0x56U, 0xf4U, 0xeaU, 0x65U, 0x7aU, 0xaeU, 0x08U, 
    0xbaU, 0x78U, 0x25U, 0x2eU, 0x1cU, 0xa6U, 0xb4U, 0xc6U, 
    0xe8U, 0xddU, 0x74U, 0x1fU, 0x4bU, 0xbdU, 0x8bU, 0x8aU, 
    0x70U, 0x3eU, 0xb5U, 0x66U, 0x48U, 0x03U, 0xf6U, 0x0eU, 
    0x61U, 0x35U, 0x57U, 0xb9U, 0x86U, 0xc1U, 0x1dU, 0x9eU, 
    0xe1U, 0xf8U, 0x98U, 0x11U, 0x69U, 0xd9U, 0x8eU, 0x94U, 
    0x9bU, 0x1eU, 0x87U, 0xe9U, 0xceU, 0x55U, 0x28U, 0xdfU, 
    0x8cU, 0xa1U, 0x89U, 0x0dU, 0xbfU, 0xe6U, 0x42U, 0x68U, 
    0x41U, 0x99U, 0x2dU, 0x0fU, 0xb0U, 0x54U, 0xbbU, 0x16U

Computer caching

Computers cache recently-accessed 
data, assuming that if you wanted it 
before, then you may want it again 

• Response of array lookup depends upon 
whether the value is already in cache 

• This, in turn, depends on whether you’ve 
already looked up this value in the past

Source: github.com/openssl/openssl/blob/master/crypto/aes/aes_core.c

CPU 
(bytes)

Cache 
(KB to MB)

RAM 
(GB)



Cache attack: Mallory co-resident with Alice

• For now, suppose Mallory has a presence on Alice’s machine 

• Co-located VMs on the cloud 

• Unprivileged account on a multi-tenant Unix machine with full-disk encryption 

• Unprivileged application that can write files to a phone with disk encryption 

• Cache is shared between all tenants on a machine 

• Ergo, Mallory can influence the state of Alice’s cache! 
[Osvik, Shamir, Tromer 2006]



How the cache works

• Fixed mapping between 
locations in memory & cache 

• When victim Alice runs AES, 
selected portions of the S-box 
move into cache  

• If Mallory controls a large 
region of memory (~size of 
cache), she can fill in the cache 
with her own contents

Al
ic

e’
s 

S-
bo

x

M
al

lo
ry

’s
 

ar
ra

y



Prime + Probe attack

Algorithm: 

1. Mallory fills the cache with a large array A 

2. Wait for Alice to execute an AES encipher/decipher operation 

3. Mallory re-reads array A, records time to retrieve each byte 

Upshot: AES evicted some lines of Mallory’s cache based upon secret key 

Strength: Find key byte with 
~800 samples over 65ms 

Countermeasure: check for  
scans of large arrays?



Evict + Time attack

Algorithm: 

1. Mallory creates a large array A but does not read it yet 

2. Trigger an AES encipher/decipher with known input x/output y 

3. Mallory reads a few bytes of array A 

4. Trigger another AES encipher/decipher with the same x/y 

Upshot: 2nd AES is slower iff Mallory evicted the right cacheline 

Strength: Find key byte with ~50k samples over ~30s, without ever reading 
a really large array



Timing attack: Mallory observes Alice over network

• Suppose Alice kicks Mallory off of her machine 

• Mallory cannot tamper with Alice’s cache 

• Mallory doesn’t get to observe Alice’s cache directly 

• Still, timing information may be viewable remotely! 

• Mallory can observe response times to Alice’s TLS packets over the internet 

• Mallory can use this info to find Alice’s key (albeit with many more samples)



Timing of first round table lookups

• In the first round, AES code makes 16 S-box table lookups 

• If a1 == a2, then S[a2] table lookup will be fast since the value is in cache 

• In general, 1st round running time      # of distinct intermediate values

16 byte input X

S S S S

first round key
a1 = key1 ⊕ x1 a16 = key16 ⊕ x16

b1 = S[a1] b2 = S[a2] b16 = S[a16]

…
a2 = key2 ⊕ x2

∝



How can Mallory exploit speed differences?

• Let’s say Mallory tells Alice to encipher an input with x1 = 01, x2 = 02 

• Suppose for now that Mallory magically learns that a cache hit occurs in 
the first two S-box lookups 

• Then, Mallory knows that 

a1 = a2 

key1 ⊕ x1 = key2 ⊕ x2 

key1 ⊕ key2 = x1 ⊕ x2 = 03



How can Mallory find Alice’s key?

• Even knowing key1 ⊕ key2 = x1 ⊕ x2 = 03 doesn’t tell you key1 or key2 

• What if all 16 input bytes caused collisions? 

• Then Mallory can also compute key1 ⊕ key3, key1 ⊕ key4, …, key1 ⊕ key16 

• I claim that Mallory has effectively learned 120 of the 128 bits of key! 

• There are 256 choices for key1 

• Each choice gives a unique remaining option for key2, key3, …, key16 

• Brute-force the rest if you have an (x, y) pair



Making the attack more realistic

Simplifying assumptions so far 

• 1 input x !-> many cache collisions 

• Can tell which bytes of a collide 

• Timing measurement corresponds 
precisely to first round runtime, 
which is exactly proportional to # 
of a collisions

How to remove these assumptions 

• View time for many colliding x 
(stronger signal) 

• Vary x samples only in certain 
locations (more precise signal) 

• Collect even more samples to 
overcome noise



Tactic 1: Collect more samples

• Strategy 
• Don’t assume the existence of a single “magical” x with many collisions 

• Instead, simply try many possible x 

• If x is chosen randomly, then the probability that: 
• a given pair of bytes (e.g., bytes 1 and 2) collide = 1/256 

• byte 1 collides with some other byte ≈ 1/16 

• there exists a collision = 1 – (256 choose 16)/(25616) ≈ 1 – 10-14 

• Just as before, each collision yields a constraint on the key 

• Sample enough x until we observe 15 independent constraints



Tactic 2: Strategically vary x

• Mallory needs to (1) observe a collision and (2) know where it occurs 

• We can determine which bytes collide by fixing part of x 

• Example: take average timing over several inputs with 

• x1 = 0, x2 = 0, and the other 14 bytes randomly chosen 

• x1 = 0, x2 = 1, and the other 14 bytes randomly chosen 

• … 

• x1 = 0, x2 = 255, and the other 14 bytes randomly chosen 

• For whichever bucket is consistently faster, x1 ⊕ x2 = key1 ⊕ key2



Tactic 3: Repeat to overcome noise

• We know that Time(AES) is smaller when a1 = a2 than when they differ 

• Mallory’s measurement of AES runtime depends on many other factors 

• Other bytes in the same cache line 

• Other bytes of the 1st round (or last round if Mallory knows the output y) 

• Other rounds 

• Network latency (if you’re conducting this attack remotely) 

• With enough samples, we can average over this noise! 

• Bin running times by x1 ⊕ x2, see which is smallest



Countermeasures to (cache) timing attacks

1. Don’t have table lookups 

• Hardware implementations of AES are not vulnerable 

• There exist other ciphers that are designed to avoid the need for table 
lookups (e.g., we will see later in the course that SHA-3 doesn’t have any) 

2. Look up the entire table 

• Pre-load the entire S-box into the cache before beginning AES 

• Then the timing doesn’t depend on the particular values that you look up 

• Precarious because you might get interrupted in the middle of execution



Side channels ⇒ difficult to implement crypto securely

Source: 
moserware.com/2009/09/stick-figure-guide-to-advanced.html



What you should do

Validate code for timing independence Use good crypto coding conventions

Source: cryptocoding.net/index.php/Coding_rulesSource: github.com/agl/ctgrind


