
Lecture 9: Message Authentication Codes

• Midterm 1 has been graded, available on Gradescope 

• Nicolas’ discussion section on Friday will review the test 

• Homework 5 will be posted today 

• Required reading: portions of two textbooks 

• The Block Cipher Companion (section 4.4) 

• The Hash Function BLAKE (sections 2.1, 2.2, 2.4)



Crypto in this course so far
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Which string “looks” random and unpredictable?

11111111 

01010101 

10100011

• Each string is equally likely to occur 

• You cannot look at a single output string and 
determine its (un)predictability 

• Same problem occurs when evaluating the 
unpredictability of a single codebook 

• Our pseudorandomness definition instead 
evaluates the process of choosing a codebook

X Y

000 001

001 110

010 000
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100 011
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110 101

111 100



Review: Block ciphers like AES

• Family of permutations, each 
of the form B : {0,1}μ → {0,1}μ 

• Key K ∈ {0,1}λ determines  
which permutation to use 

• BK is strongly pseudorandom if every adversary running in time ≤ t and 
making ≤ q queries cannot tell it apart from a secret, truly random Π
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Review: Block cipher design

Block cipher !<- Key alternation !<- Iterated rounds !<- Substitution-Permutation
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Review: Alice’s confidentiality + integrity goals

• Data privacy: Eve cannot learn P 

• Data authenticity: 
if Eve tampers with C, then  
Alice can detect the change 

• Entity authenticity: 
future Alice knows that she 
previously created C

C = Enc(K, P)

P = Dec(K, C)msg P



Review: Modes of operation (CBC, CTR)

Block cipher = family of codebooks 

• Each key K yields different codebook BK 

• Fast to compute: throughput ~3-4 GB/sec

Mode of operation = variability 

• Allows long message with short key 

• Thwarts frequency analysis
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Review: Security definitions

Block cipher 

BK looks like a truly random function, 
meaning nobody can tell them apart

Encryption scheme 

Similar, except even making the same 
request twice yields different answers
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–Michael A. Specter, James Koppel, 
and Daniel Weitzner (MIT)

“The length of the encrypted 
packet clearly leaks which 
candidate was selected.” 

Source: internetpolicy.mit.edu/wp-content/uploads/2020/02/SecurityAnalysisOfVoatz_Public.pdf



Review: Protecting data confidentiality

private	message	P

???

small	key	K K

decrypt	P	=	D(K,	C)

encrypt	C	=	E(K,	P)



–Prof. Matthew Green, Johns Hopkins

“Confidentiality xor authenticity is not possible.  
If you don't have both, often you don't have either.” 

!



Lack of authenticity !-> lack of confidentiality
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Message authentication code (MAC)

MACs stop an actively malicious Mallory from: 
- injecting a new message and tag (A*, T*) 
- tampering with an existing one

send A along with 
tag T = MACK(A) validate 

T = MACK(A)

key K

auth 
msg A

key K



What cryptographic authenticity will not do

• Hide message contents: 
Need encryption for that 

• Thwart replay attacks: 
A higher-level protocol needs to handle 
this, say via nonces or timestamps

A, T = MACK(A)



Definition: Message authentication code

Algorithms 

• KeyGen: choose key K !<- {0,1}λ 

• MACK ( A ∈ {0,1}α ) → tag T ∈ {0,1}τ 

– Can be randomized 

– But usually deterministic 

– Prefer short tags: τ < α 

• VerifyK ( A, T ∈ {0,1}τ ) → yes/no

Requirements 

• Performance: All algorithms are 
efficiently computable 

• Correctness: For all K, tags made 
by MACK are accepted by VerifyK 

• Security (informal): Even after 
observing many (A, T) pairs, 
Mallory cannot forge a new one



Formalizing security via existential unforgeability

We say that a MAC satisfies (q, t, ε)-existential unforgeability against a 
chosen message attack if all adversaries Mallory that make ≤ q queries 
and run in time ≤ t can forge a message with probability < ε 

Restriction: Mallory cannot verify a MAC tag that Alice produced
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Block cipher !-> MAC

• For our first MAC, let’s restrict |A| = |T| = block length of a block cipher 

• In this case, simply applying the block cipher suffices to build a MAC! 

MACK(A) = BK(A) 

• How do we prove this claim? 

• BK is pseudorandom, meaning Mallory cannot distinguish it from Π 

• The EU-CMA game is about forgery; it doesn’t have an indistinguishability style 

• What if we made the MAC from Π rather than BK? 

• Remember, the output of Π(X) doesn't depend on Π(X’) for any X ≠ X’



–Jon Katz and Yehuda Lindell, Introduction to Modern Cryptography

“If an adversary Eve has not explicitly queried a [perfect 
codebook] R on some point X, then the value of R(X) is 
completely random… at least as far as Eve is concerned.” 



Thm:       is pseudorandom !->               is EU-CMA

Prove the contrapositive: given adversary Mallory that forges a MAC, we 
will construct an adversary Eve that distinguishes a block cipher from Π
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Block 
cipher 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E

Thm:       is pseudorandom !->               is EU-CMA

Why this works: If E had access to BK then M can forge. If E had access to 
Π then Pr[M forges] ≤ 2-τ because Π(A*) is independent of other queries
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MACs for longer messages?

• Performance goal: minimize 
space required for MAC tag 

• Security goal: ensure that 
MAC remains existentially 
unforgeable

tag space {0,1}τ
message space {0,1}α



CBC-MAC: cipher block chaining, revisited

• 1st block simply runs the underlying block cipher (no more nonce/IV!) 

• Subsequent inputs to the block cipher depend on both new input + prior output! 

• Only the final block tag is revealed !=> important for performance and security
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