
Lecture 10: Variable-length MACs

• Homework 5 has been posted on Gradescope, due Monday 3/2

• Required reading: portions of two textbooks

• The Block Cipher Companion (section 4.4)

• The Hash Function BLAKE (sections 2.1, 2.2, 2.4)

Message authentication code (MAC)

MACs stop an actively malicious Mallory from: 
- injecting a new message and tag (A*, T*)
- tampering with an existing one

send A along with 
tag T = MAC.TagK(A) validate 

T = MAC.TagK(A)

key K

auth 
msg A

key K

Definition: Message authentication code

Algorithms

• KeyGen: choose key K !<- {0,1}λ

• TagK (A ∈ {0,1}α) → tag T ∈ {0,1}τ

– Usually deterministic

– Prefer short tags: τ < α

• VerifyK (A, T ∈ {0,1}τ) → yes/no

– Recompute T* = MACK (A) tag

– Check if T* == T

Requirements

• Performance: Fast algorithms

• Correctness: For all K, tags made
by MACK are accepted by VerifyK

• EU-CMA: Mallory cannot forge tags,
with the restriction that she can’t
Verify tags produced by MAC

Tag$

Verify$ No!

Tag$

Recap: MAC for one-block messages

• For our first MAC, let’s restrict |A| = |T| = block length of a block cipher

• In this case, simply applying the block cipher suffices to build a MAC!

• MAC.KeyGen runs BlockCipher.KeyGen to sample a key K

• MAC.TagK(A) = BlockCipher.EncipherK(A)

• MAC.VerifyK(A, T) re-computes the MAC tag and checks equality with T

Variable length MACs?

Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

A1

BK

A2

T

A3

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

2. Auth each block separately Change order of blocks

BK

A1

T1

BK

A2

T2

BK

A3

T3

Variable length MACs?
Extensions that fail (even with 1 query!) How to produce a forged message

1. XOR all message blocks together,
authenticate the result Find another message with same XOR

2. Auth each block separately Change order of blocks

3. Auth each block along with sequence # Drop blocks from the end of the message

BK

(A1, 1)

T1

BK

(A2, 2)

T2

BK

(A3, 3)

T3

Encode length 
of message?

A construction that works

Four inputs per block:

• AS = part of the message  
(using ¼ block length at a time)

• S = this block’s sequence number

• L = length of overall message

• N = nonce chosen for this message

Thm. If BK is (t, ε)-pseudorandom,  
then this construction yields a
MAC that is (t, ε')-EU-CMA for ε'
negligibly close to ε.

Terrible performance though…

• Bad throughput: invoke BK four times
as much as minimally necessary

• Long tag: want tag length τ == security
parameter λ, indep of msg length α

BK

(A1, 1, L, N)

T1

BK

(A2, 2, L, N)

T2

…

overall T

We can do better!

• New objective: find better constructions of MACs from block ciphers

• Insist that τ = 1 block in length, at most

• Security-space tradeoff

• Can truncate the tag to l < τ bits in length, if desired

• Ideally, the MAC still requires 2l effort to forge

CBC-MAC: cipher block chaining, revisited

• 1st block simply runs the underlying block cipher (no more nonce/IV!)

• Subsequent inputs to the block cipher depend on both new input + prior output

• Only the final block tag is revealed !=> important for performance and security

BK

A1

BK

A2

BK

A3

T

CBC-MAC

Theorem. If is pseudorandom, then is an EU-CMA MAC 
…for any pre-specified fixed length that is a multiple of the block length

Theorem. CBC-MAC insecure if recipient doesn't know length in advance,
or if length is not a multiple of the block length (i.e., padding won’t work)

CBC-MAC BKBK

BK

A1

BK

A2

BK

A3

T

BK

A1’

BK

A2’

BK

A3’

T’

T ⊕

T

A1’

FMAC: Use a different key for the final step

BK

A1

BK

A2 A3

BKend

T

BK

A1

BK

A2

BKend’

A3 , 10*

T
Key expansion is expensive

Without padding With padding

Cipher-based MAC (CMAC)

• Designed by Black and Rogaway, 2000

• Don't use extra keys to encrypt. Use them to influence the final block.

BK

A1

BK

A2 A3

BK

T

BK

A1

BK

A2

BK

A3 , 10*

T

Kend Kend’

Without padding With padding

One-key CBC-MAC (OMAC)

• Designed by Iwata & Kurosawa 2003

• Derive the finalization keys Kend, Kend’ from the original key K 
(saves on key length)

BK

A1

BK

A2 A3

BK

T

BK

A1

BK

A2

BK

A3 , 10*

T

Kend Kend’

Without padding With padding

Crypto in practice uses… none of these MACs?

bu.edu homepage (2017) www.amazon.com

http://bu.edu
http://www.amazon.com

Hash function = 1 public, infinite-size codebook

• Hash function H : {0,1}∞ → {0,1}out

• Compresses long messages into short digests

• No longer possible to invert!

• We have already seen one in the homeworks: SHA-256

X Y
aba nr
abs mb
ace yd
act wv
add je
ado hg
aft uv
age zm
ago ds
aha ae
aid kf

⋮ ⋮

zip cy
zoo dx

Hash function: length-reducing !-> collisions exist

finite set

infinite set

Hash function strength

Def. A hash func)on H: {0,1}* → {0,1} η is an efficiently-computable func?on
that accepts unbounded input and outputs strings of a fixed length η

Security notions against adversaries who possess the code of H

• Preimage resistance: given y = H(x), tough to find any preimage x’

• 2nd preimage resistance: given x, tough to find new x’ s.t. H(x’) = H(x’)

• Collision resistance: given only H, difficult to find two different inputs 
x and x’ s.t. H(x’) = H(x’) faster than a birthday bound search

Giving Mallory the code of H !>> her power in any other game in this class

stronger

Birthday bound (reminder)

• When drawing with replacement from set of size L,  

• The distribution of M is tightly concentrated around its expected value

E[# items to draw until first collision] ≈
π
2

L ≈ 1.25 L

Secure Hash Algorithm (SHA) family

• SHA-1 and SHA-2 are NSA-designed, NIST-approved

• 1995: SHA-1 (160 bits) is now broken, though still occasionally used today

• Wang, Yin, Yu 04: showed algorithm for 269 step collision

• Stevens et al 17: found collision in 263 steps

• 2001: SHA-2 family (224, 256, 384, or 512 bits) is the recommended hash
function to use today

• All follow a Merkle-Damgard design

• 2015: New SHA-3 standard with different design + designers (will discuss later)

Merkle-Damgård paradigm

Can build a variable-length input hash function from two primitives:

1. A fixed-length, compressing random-looking function

2. A mode of operation that iterates this function multiple times in a smart manner

IV for hash function is typically fixed in spec (unlike CBC, it never changes)

CIV

M1

C

M2

C

Mn

hash

…

Problem: Length extension attack

C

M1

C

M2

C

Mn

…

hash

Mn+1

C hash’

Countermeasure: finalization

hashCIV

M1

C

M2

C

Mn

…

final

Hash function → MAC

• NMAC: finalize the hash function by calling C one more time

• There are two keys, and the final step depends on the second key

CIV

K1

C

M1

C

L

tag T

…

C
K2

H(K1 || M)

HMAC [Bellare Canetti Krawczyk 97]

• HMAC: Like before, but derive two “independent” keys from one key

• Recall from CMAC !-> OMAC story: nobody wants to carry multiple keys

• Fixed constants ipad = 0x5C, opad = 0x36 repeated to equal the key length

CIV

K ⊕ ipad
C

M1

C

L

tag T

…

C

CIV

K ⊕ opad

Strength of HMAC

Thm. HMAC is an EU-CMA MAC as long as:

1. The compression function C is pseudorandom

2. The Merkle-Damgard iteration mechanism is collision-resistant

Bellare (2005) removed condition #2, so HMAC applies even to hash
functions like MD5 and SHA1 that are not collision resistant

https://www.bu.edu in 2017:

