
Lecture 11: HMAC and Authenticated Encryption

• Homework 6 will be posted today, due Monday 3/16 (after spring break) 

• Weekly reading: The Block Cipher Companion, section 4.5 

• (Non-class-related reminder: vote today!)
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– Moxie Marlinspike

Cryptographic Doom Principle 
“If you have to perform any cryptographic operation before 
verifying the MAC on a message you’ve received, it will 
somehow inevitably lead to doom!” 



MAC Constructions

• Based on block ciphers 

• Based on hash functions (screenshot from bu.edu in 2017) 

CBC-MAC FMAC CMAC OMAC



Hash function = 1 public, infinite-size codebook

• Hash function H : {0,1}∞ → {0,1}η compresses messages into short digests 

• Collision resistant, even if Mallory sees the code of H 

• Unlike block ciphers or MACs, whose security depends upon hiding the key 

• NIST standards: SHA-2, SHA-3 

• Four output lengths: 224, 256, 384, and 512 bits 

• SHA = Secure Hash Algorithm 

• Question: How do we build a hash function?



Merkle-Damgård paradigm (used in SHA-2)

Can build a variable-length input hash function from two primitives: 

1. A fixed-length, compressing random-looking function 

2. A mode of operation that iterates this function multiple times in a smart manner

IV for hash function is typically fixed in spec (unlike CBC, this value never changes)
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Mihir Bellare’s constraints for collision-free padding

1. Message M is always a prefix of pad(M) 

2. If |M1| = |M2|, then |pad(M1)| = |pad(M2)| 

3. If |M1| ≠ |M2|, then last block of pad(M1) ≠ last block of pad(M2) 

One convention: write string length as the sole contents of final block
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Why Bellare’s padding suffices

Theorem. If C: {0,1}2η !-> {0,1}η is collision-resistant, then H: {0,1}* !-> {0,1}η 
following the Merkle-Damgard construction is also collision-resistant 

Proof sketch. If Mallory finds a collision in H ⇒ Mallory finds collision in C 

• If |M| ≠ |M’|: Collision in the final steps: C(something || L) and C(something || L’) 

• If |M| = |M’| but M ≠ M’: State after each C start out different, become identical 
somewhere!
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Hash function !-> MAC (first attempt)

Idea: take a hash of the key and message 

• MAC.KeyGen samples a key K !<- {0,1}λ uniformly at random 

• MAC.TagK (A) = H(K || A), note that this tag has fixed length τ = η 

• MAC.Verify operates in the usual way: re-compute the tag and compare 

Notation: || denotes the concatenation of two bytestrings



• Length extension breaks our MAC, but doesn’t break collision resistance 

• Bellare’s padding does not save us from length extension (why?)

Problem with Merkle-Damgård: Length extension
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Countermeasure: finalization
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Hash function !-> MAC (done properly)

• NMAC: finalize the hash function by calling C one more time 

• There are two keys, and the final step depends on the second key
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HMAC [Bellare Canetti Krawczyk 97]

• HMAC: Like before, but derive two “independent” keys from one key 

• Recall from CMAC !-> OMAC story: nobody wants to carry multiple keys 

• Fixed constants ipad = 0x5C, opad = 0x36 repeated to equal the key length
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Strength of HMAC

Thm. HMAC is an EU-CMA MAC as long as: 

1. The compression function C is pseudorandom 

2. The Merkle-Damgard iteration mechanism is collision-resistant 

Bellare (2005) removed condition #2, so HMAC is safe with hash functions 
like MD5 and SHA1 that are preimage resistant but not collision resistant 

Recall the bu.edu connection settings in 2017:



Combining Encryption and Authentication



Encryption: IND$-CPA

Restriction: Mallory can’t re-use nonce  

(in the stronger variant, which will be 
our focus from now onward)

MAC: EU-CMA

Restriction: Mallory cannot verify a 
MAC tag that Alice produced
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Let’s strengthen our definition of privacy

Same thing, but now Mallory has access to 
encryption and decryption oracles 

Claim: Encryption schemes meeting this 
stronger definition also provide authenticity
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Formalizing IND$-CCA

Comprises 3 algorithms: 

• KeyGen(λ) outputs a key K ← {0,1}λ 

• EncryptK(message P, nonce N) → C 

• DecryptK(ciphertext C, nonce N) → P 

Satisfies 3 constraints 

• Performance: all 3 algorithms are 
efficiently computable 

• Correctness: DecK (EncK(P, N)) = P for 
all K ∈ {0,1}λ , N ∈ {0,1}μ , and P ∈ {0,1}*

• (q, t, ε)-IND$-CCA: for every nonce-respecting 
adversary M who makes ≤ q queries and runs in 
time ≤ t, 
 
 
where $ responds randomly and so does $-1 
subject to consistency with $
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Combining Enc and MAC generically

P || pad
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Intuitive concerns with MAC then Enc 
• The private data P is authenticated, but C is not! 
• Recipient must perform decryption before 

knowing whether the message is authentic
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Combining Enc and MAC generically

MAC then Enc

P || pad
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Confidentiality None CPA CCA!

Integrity Plaintext integrity: Cannot make CT that decrypts to 
message that sender never encrypted

Ciphertext integrity: Cannot make new 
valid CTs, only know sender-made ones
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Formalizing ciphertext integrity

• Goal: Mallory cannot make a valid CT that wasn’t previously made by sender 

• Imagine that Mallory is trying to perform a padding oracle attack 

• If she spams Bob with malformed CTs, now he simply rejects them all!

$Enc$

Dec$ No
Operation: This box returns a single “integrity failure” 
error message no matter what Mallory submits! 

Restriction: Mallory cannot attempt to decrypt 
ciphertexts that are the result of prior encryptions.



Relating ciphertext integrity to privacy

• Theorem. Suppose that an encryption scheme provides (q, t, ε1)-CPA privacy and 
(q, t, ε2)-ciphertext integrity. Then, it also provides (q, t, ε1+2ε2)-CCA privacy. 

• Intuition: If Mallory can’t forge new messages, then Dec oracle is useless to her 

• Proof by picture:
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Relating ciphertext integrity to privacy

• Theorem. Suppose that an encryption scheme provides (q, t, ε1)-CPA privacy and 
(q, t, ε2)-ciphertext integrity. Then, it also provides (q, t, ε1+2ε2)-CCA privacy. 

• Lesson: to build strong encryption, it suffices to satisfy CPA and ciphertext 
integrity. Let's make one final security definition that combines these concepts…



Def. Authenticated Encryption with Associated Data (AEAD)

• KeyGen: randomly choose K, as usual 

• EncK(authenticated data A, 
private + auth data P, nonce N) → 
ciphertext C of length |C| ≥ |P| 

• DecK(C, A, N) → P or error 

Why combine authentication and encryption? 

• Better security: satisfies Moxie’s doom principle, resists some side channel attacks 

• Simplicity: developers have fewer decisions (i.e., opportunities for mistakes) 

• Performance: save in time + space costs, also often only need 1 key
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AEAD security definition

gibberishEnc

Dec “I refuse”

Restrictions 

• Can’t reuse nonce

• Can’t ask to decrypt 
CT made by Alice


