Lecture 11: HMAC and Authenticated Encryption

« Homework 6 will be posted today, due Monday 3/16 (after spring break)
« Weekly reading: The Block Cipher Companion, section 4.5

» (Non-class-related reminder: vote today!)

Crypto in this course

g o:u--bﬂ‘

N s

Protected
Elegant |]
- communication |

protocols —

Utilitarian

Block |)
tools

| ciphers] | functions ;

N

i Random(ish) i
| permutations |

Cryptographic Doom Principle

“If you have to perform any cryptographic operation before
verifying the MAC on a message you've received, it will
somehow Inevitably lead to doom!”

— Moxie Marlinspike

MAC Constructions

e Based on block ciphers

-~

-

CBC-MAC

~

_»
J

FMAC >

CMAC

OMAC

e Based on hash functions (screenshot from bu.edu in 2017)

Obsolete connection settings

The connection 10 this site uses TLS 1.0 (an obsolete
protocol), RSA (an obsolete key exchange), and
AES 256 CBC with HMAC-SHAT1 (an obsolete

cipher).

Hash function = 1 public, infinite-size codebook

* Hash function H: {0,1}» = {0,1}n compresses messages into short digests

* Collision resistant, even if Mallory sees the code of H

* Unlike block ciphers or MACs, whose security depends upon hiding the key

e NIST standards: SHA-2, SHA-3
e Four output lengths: 224, 256, 384, and 512 bits
e SHA = Secure Hash Algorithm

e Question: How do we build a hash function?

Merkle-Damgard paradigm (used in SHA-2)

Can build a variable-length input hash function from two primitives:

1. A fixed-length, compressing random-looking function

2. A mode of operation that iterates this function multiple times in a smart manner

M,

I

>

IV
\

C

M;

.

—

C

AN

.

>

C

» hash

\ IV for hash function is typically fixed in spec (unlike CBC, this value never changes)

Mihir Bellare’'s constraints for collision-free padding

1. Message M is always a prefix of pad(M)
2. If [M1] = IM2], then |pad(M1)| = |[pad(M2)|
3. If IM1] # [M2], then last block of pad(M1) # last block of pad(M2)

M, M, 4L
I L. . /L
|V . ¢ _ . C C » hash

One convention: write string length as the sole contents of final block

Why Bellare’s padding suffices

Theorem. If C: {01}2n — {01} is collision-resistant, then H: {01}* — {01}n
following the Merkle-Damgard construction is also collision-resistant

Proof sketch. If Mallory finds a collision in H = Mallory finds collision in C

* If IM]| # [M’]: Collision in the final steps: C(something || L) and C(something || L)
* If IM]| = |M’'| but M # M’: State after each C start out different, become identical

somewhere! |
My M L My M’ L’
L» I—> °e I—> L» I_> oo I—>
[/ — C SN C > C — (M) [/ — C SN C > C — (M)

Hash function = MAC (first attempt)

ldea: take a hash of the key and message

e MAC.KeyGen samples a key K < {0,1}* uniformly at random

* MAC.Tagi(A) = H(K || A), note that this tag has fixed length T =n

 MAC.Verify operates in the usual way: re-compute the tag and compare

Notation: || denotes the concatenation of two bytestrings

Problem with Merkle-Damgard: Length extension

e Length extension breaks our MAC, but doesn’t break collision resistance

» Bellare’s padding does not save us from length extension (why?)

hash = C quh’

Countermeasure: finalization

» hash

Hash function = MAC (done properly)

 NMAC: finalize the hash function by calling C one more time

 There are two keys, and the final step depends on the second key

M, L

op— . N Ky s

v — € ., ¢ _ __ . C C
H(K, 1] M)

»tag |

HMAC [Bellare Canetti Krawczyk 97]

« HMAC: Like before, but derive two “independent” keys from one key

e Recall from CMAC — OMAC story: nobody wants to carry multiple keys

* Fixed constants ipad = 0x5C, opad = 0x36 repeated to equal the key length

M. L

SR M I

L

Strength of HMAC

Thm. HMAC Is an EU-CMA MAC as long as:
1. The compression function C i1s pseudorandom

2. The Merkle-Damgard iteration mechanism is collision-resistant

Bellare (2005) removed condition #2, so HMAC is safe with hash functions
like MD5 and SHA1 that are preimage resistant but not collision resistant

Recall the bu.edu connection settings in 2017:

B8 Obsolete connection settings

The connection to this site uses TLS 1.0 (an obsolete

protocol), RSA (an obsolete key exchange), and
AES 256 CBC with HMAC-SHA1 (an obsolete

cipher).

Combining Encryption and Authentication

Encryption: INDS-CPA

MAC: EU-CMA

Restriction: Mallory can’t re-use nonce Restriction: Mallory cannot verify a

. , , , MAC tag that Alice produced
(in the stronger variant, which will be

our focus from now onward)

Let’s strengthen our definition of privacy

INDS-CPA INDS-CCA

| Same thing, but now Mallory has access to
| encryption and decryption oracles

Claim: Encryption schemes meeting this
stronger definition also provide authenticity

Formalizing INDS-CCA

Comprises 3 algorithms:
» KeyGen(A) outputs a key K <« {0,1}2
» Encrypt{message P, nonce N) - C

- Decrypty(ciphertext C, nonce N) - P

Satisfies 3 constraints

» Performance: all 3 algorithms are
efficiently computable

» Correctness: Decy (Enci (P, N)) = P for
allKe{01}A, N e {01}#, and P e {01}*

(g, ¢, €)

* (g, t, £)-INDS-CCA: for every nonce-respecting

adversary M who makes < g queries and runs In
time < t,

pEnci.Decy Ry ae S8~

where S responds randomly and so does $-1
subject to consistency with S

Combining Enc and MAC generically

Enc and MAC MAC then Enc Enc then MAC

P11 pad é P é Pl pad

C

Intuitive concerns with MAC then Enc

 The private data P is authenticated, but C is not!
 Recipient must perform decryption before
knowing whether the message Is authentic

Combining Enc and MAC generically

Enc and MAC MAC then Enc Enc then MAC
P11 pad | P E Pl pad
pad |
7
C T
None CPA CCA!
Plaintext integrity: Cannot make CT that decrypts to Ciphertext integrity: Cannot make new

message that sender never encrypted valid CTs, only know sender-made ones

Formalizing ciphertext integrity

e Goal: Mallory cannot make a valid CT that wasn’t previously made by sender
e Imagine that Mallory is trying to perform a padding oracle attack

e |f she spams Bob with malformed CTs, now he simply rejects them all!

Operation: This box returns a single “integrity failure”
error message no matter what Mallory submits!

' Restriction: Mallory cannot attempt to decrypt
ciphertexts that are the result of prior encryptions.

Relating ciphertext integrity to privacy

* Theorem. Suppose that an encryption scheme provides (q, t, £,)-CPA privacy and
(g, t, €,)-ciphertext integrity. Then, it also provides (q, t, £,+2¢,)-CCA privacy.

 Intultion: If Mallory can’t forge new messages, then Dec oracle Is useless to her

e Proof by picture:

by CTXT

N

-------- by CTXT, emulate S

/ in Mallory’s head

Relating ciphertext integrity to privacy

* Theorem. Suppose that an encryption scheme provides (q, t, £,)-CPA privacy and
(g, t, €,)-ciphertext integrity. Then, it also provides (q, t, £,+2¢,)-CCA privacy.

e Lesson: to build strong encryption, 1t suffices to satisfy CPA and ciphertext
Integrity. Let's make one final security definition that combines these concepts...

Def. Authenticated Encryption with Associated Data (AEAD)

P A, N C,A N
» KeyGen: randomly choose K, as usual l l l

 Enci(authenticated data A,
private + auth data P, nonce N) -

l

P/ error

ciphertext C of length |C| = |P]
» Deci(C, A, N) > P or error

O e

Why combine authentication and encryption?
e Better security: satisfies Moxie’s doom principle, resists some side channel attacks
« Simplicity: developers have fewer decisions (i.e., opportunities for mistakes)

e Performance: save In time + space costs, also often only need 1 key

AEAD security definition

Restrictions

e Can’'treuse nonce

 Can’t ask to decrypt
. CT made by Alice

