
Lecture 11: HMAC and Authenticated Encryption

• Homework 6 will be posted today, due Monday 3/16 (after spring break)

• Weekly reading: The Block Cipher Companion, section 4.5

• (Non-class-related reminder: vote today!)

Crypto in this course

Random(ish)
permutations

Block
ciphers

Hash
functions

???

Protected
communication

???

??????

Utilitarian
tools

Elegant
protocols

– Moxie Marlinspike

Cryptographic Doom Principle
“If you have to perform any cryptographic operation before
verifying the MAC on a message you’ve received, it will
somehow inevitably lead to doom!”

MAC Constructions

• Based on block ciphers

• Based on hash functions (screenshot from bu.edu in 2017)

CBC-MAC FMAC CMAC OMAC

Hash function = 1 public, infinite-size codebook

• Hash function H : {0,1}∞ → {0,1}η compresses messages into short digests

• Collision resistant, even if Mallory sees the code of H

• Unlike block ciphers or MACs, whose security depends upon hiding the key

• NIST standards: SHA-2, SHA-3

• Four output lengths: 224, 256, 384, and 512 bits

• SHA = Secure Hash Algorithm

• Question: How do we build a hash function?

Merkle-Damgård paradigm (used in SHA-2)

Can build a variable-length input hash function from two primitives:

1. A fixed-length, compressing random-looking function

2. A mode of operation that iterates this function multiple times in a smart manner

IV for hash function is typically fixed in spec (unlike CBC, this value never changes)

CIV

M1

C

M2

C

Mn

hash

…

Mihir Bellare’s constraints for collision-free padding

1. Message M is always a prefix of pad(M)

2. If |M1| = |M2|, then |pad(M1)| = |pad(M2)|

3. If |M1| ≠ |M2|, then last block of pad(M1) ≠ last block of pad(M2)

One convention: write string length as the sole contents of final block

CIV

M1

C

M2

C

L

hash

…

Why Bellare’s padding suffices

Theorem. If C: {0,1}2η !-> {0,1}η is collision-resistant, then H: {0,1}* !-> {0,1}η
following the Merkle-Damgard construction is also collision-resistant

Proof sketch. If Mallory finds a collision in H ⇒ Mallory finds collision in C

• If |M| ≠ |M’|: Collision in the final steps: C(something || L) and C(something || L’)

• If |M| = |M’| but M ≠ M’: State after each C start out different, become identical
somewhere!

CIV

M1

C

M2

C

L

H(M)

…

CIV

M1’

C

M2’

C

L’

H(M)

…

Hash function !-> MAC (first attempt)

Idea: take a hash of the key and message

• MAC.KeyGen samples a key K !<- {0,1}λ uniformly at random

• MAC.TagK (A) = H(K || A), note that this tag has fixed length τ = η

• MAC.Verify operates in the usual way: re-compute the tag and compare

Notation: || denotes the concatenation of two bytestrings

• Length extension breaks our MAC, but doesn’t break collision resistance

• Bellare’s padding does not save us from length extension (why?)

Problem with Merkle-Damgård: Length extension

Mn+1

CC

K

C

M1

C

Mn

…
hash hash’

Countermeasure: finalization

hashCIV

M1

C

M2

C

Mn

…

final

Hash function !-> MAC (done properly)

• NMAC: finalize the hash function by calling C one more time

• There are two keys, and the final step depends on the second key

CIV

K1

C

M1

C

L

tag T

…

C
K2

H(K1 || M)

HMAC [Bellare Canetti Krawczyk 97]

• HMAC: Like before, but derive two “independent” keys from one key

• Recall from CMAC !-> OMAC story: nobody wants to carry multiple keys

• Fixed constants ipad = 0x5C, opad = 0x36 repeated to equal the key length

CIV

K ⊕
C

M1

C

L

tag

…

C

CIV

K ⊕ opad

Strength of HMAC

Thm. HMAC is an EU-CMA MAC as long as:

1. The compression function C is pseudorandom

2. The Merkle-Damgard iteration mechanism is collision-resistant

Bellare (2005) removed condition #2, so HMAC is safe with hash functions
like MD5 and SHA1 that are preimage resistant but not collision resistant

Recall the bu.edu connection settings in 2017:

Combining Encryption and Authentication

Encryption: IND$-CPA

Restriction: Mallory can’t re-use nonce

(in the stronger variant, which will be
our focus from now onward)

MAC: EU-CMA

Restriction: Mallory cannot verify a
MAC tag that Alice produced

P, N

$

P, N

C C

Enc

Tag$

Verify$ No!

Tag$

Let’s strengthen our definition of privacy

Same thing, but now Mallory has access to
encryption and decryption oracles

Claim: Encryption schemes meeting this
stronger definition also provide authenticity

P, N

$

P, N

C C

Enc Enc

Dec$ $-1

IND$-CCAIND$-CPA

P, N
C

C, N

P

Formalizing IND$-CCA

Comprises 3 algorithms:

• KeyGen(λ) outputs a key K ← {0,1}λ

• EncryptK(message P, nonce N) → C

• DecryptK(ciphertext C, nonce N) → P

Satisfies 3 constraints

• Performance: all 3 algorithms are
efficiently computable

• Correctness: DecK (EncK(P, N)) = P for
all K ∈ {0,1}λ , N ∈ {0,1}μ , and P ∈ {0,1}*

• (q, t, ε)-IND$-CCA: for every nonce-respecting
adversary M who makes ≤ q queries and runs in
time ≤ t, 
 
 
where $ responds randomly and so does $-1
subject to consistency with $

Enc

Dec$ $-1

(q, t, ε)

MEncK,DecK ≈q,t,ϵ M$,$−1

Combining Enc and MAC generically

P || pad

MACEnc

TC

MAC then Enc

P

MAC

Enc

T
pad

C
Intuitive concerns with MAC then Enc
• The private data P is authenticated, but C is not!
• Recipient must perform decryption before

knowing whether the message is authentic

Enc and MAC

P || pad

MAC

Enc

TC

Enc then MAC

Combining Enc and MAC generically

MAC then Enc

P || pad

MACEnc

TC

P

MAC

Enc

T
pad

C

P || pad

MAC

Enc

TC

Confidentiality None CPA CCA!

Integrity Plaintext integrity: Cannot make CT that decrypts to
message that sender never encrypted

Ciphertext integrity: Cannot make new
valid CTs, only know sender-made ones

Enc and MAC Enc then MAC

Formalizing ciphertext integrity

• Goal: Mallory cannot make a valid CT that wasn’t previously made by sender

• Imagine that Mallory is trying to perform a padding oracle attack

• If she spams Bob with malformed CTs, now he simply rejects them all!

Enc

Dec$ No
Operation: This box returns a single “integrity failure”
error message no matter what Mallory submits!

Restriction: Mallory cannot attempt to decrypt
ciphertexts that are the result of prior encryptions.

Relating ciphertext integrity to privacy

• Theorem. Suppose that an encryption scheme provides (q, t, ε1)-CPA privacy and
(q, t, ε2)-ciphertext integrity. Then, it also provides (q, t, ε1+2ε2)-CCA privacy.

• Intuition: If Mallory can’t forge new messages, then Dec oracle is useless to her

• Proof by picture:
Enc Dec$ $-1

NoEnc$

by CTXT

No$

by CPA

by CTXT, emulate $-1
in Mallory’s head

Relating ciphertext integrity to privacy

• Theorem. Suppose that an encryption scheme provides (q, t, ε1)-CPA privacy and
(q, t, ε2)-ciphertext integrity. Then, it also provides (q, t, ε1+2ε2)-CCA privacy.

• Lesson: to build strong encryption, it suffices to satisfy CPA and ciphertext
integrity. Let's make one final security definition that combines these concepts…

Def. Authenticated Encryption with Associated Data (AEAD)

• KeyGen: randomly choose K, as usual

• EncK(authenticated data A, 
private + auth data P, nonce N) → 
ciphertext C of length |C| ≥ |P|

• DecK(C, A, N) → P or error

Why combine authentication and encryption?

• Better security: satisfies Moxie’s doom principle, resists some side channel attacks

• Simplicity: developers have fewer decisions (i.e., opportunities for mistakes)

• Performance: save in time + space costs, also often only need 1 key

Auth EncK

P

C

A, N

Auth DecK

C, A, N

P / error

AEAD security definition

gibberishEnc

Dec “I refuse”

Restrictions

• Can’t reuse nonce

• Can’t ask to decrypt
CT made by Alice

